HDAC3 and HDAC8 are required for cilia assembly and elongation

Cilia are extended from mother centrioles in quiescent G0/G1 cells and retracted in dividing cells. Diverse post-translational modifications play roles in the assembly and disassembly of the cilium. Here, we examined class I histone deacetylases (HDACs) as positive regulators of cilia assembly in se...

Full description

Bibliographic Details
Main Authors: Seon-ah Park, Hyunjeong Yoo, Jae Hong Seol, Kunsoo Rhee
Format: Article
Language:English
Published: The Company of Biologists 2019-08-01
Series:Biology Open
Subjects:
Online Access:http://bio.biologists.org/content/8/8/bio043828
Description
Summary:Cilia are extended from mother centrioles in quiescent G0/G1 cells and retracted in dividing cells. Diverse post-translational modifications play roles in the assembly and disassembly of the cilium. Here, we examined class I histone deacetylases (HDACs) as positive regulators of cilia assembly in serum-deprived RPE1 and HK2 cells. We observed that the number of cells with cilia was significantly reduced in HDAC3- and HDAC8-depleted cells. The ciliary length also decreased in HDAC3- and HDAC8-depleted cells compared to that in control cells. A knockdown-rescue experiment showed that wild-type HDAC3 and HDAC8 rescued the cilia assembly and ciliary length in HDAC3- and HDAC8-depleted cells, respectively; however, deacetylase-dead HDAC3 and HDAC8 mutants did not. This suggests that deacetylase activity is critical for both HDAC3 and HDAC8 function in cilia assembly and ciliary length control. This is the first study to report that HDACs are required for the assembly and elongation of the primary cilia.
ISSN:2046-6390