Adaptive Gradient-Based Iterative Algorithm for Multivariable Controlled Autoregressive Moving Average Systems Using the Data Filtering Technique

The identification problem of multivariable controlled autoregressive systems with measurement noise in the form of the moving average process is considered in this paper. The key is to filter the input–output data using the data filtering technique and to decompose the identification model into two...

Full description

Bibliographic Details
Main Authors: Jian Pan, Hao Ma, Xiao Jiang, Wenfang Ding, Feng Ding
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2018/9598307
Description
Summary:The identification problem of multivariable controlled autoregressive systems with measurement noise in the form of the moving average process is considered in this paper. The key is to filter the input–output data using the data filtering technique and to decompose the identification model into two subidentification models. By using the negative gradient search, an adaptive data filtering-based gradient iterative (F-GI) algorithm and an F-GI with finite measurement data are proposed for identifying the parameters of multivariable controlled autoregressive moving average systems. In the numerical example, we illustrate the effectiveness of the proposed identification methods.
ISSN:1076-2787
1099-0526