Improving Bearing Fault Diagnosis Using Maximum Information Coefficient Based Feature Selection
Effective feature selection can help improve the classification performance in bearing fault diagnosis. This paper proposes a novel feature selection method based on bearing fault diagnosis called Feature-to-Feature and Feature-to-Category- Maximum Information Coefficient (FF-FC-MIC), which consider...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-11-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/8/11/2143 |