Stochastic Portfolio Selection Problem with Reliability Criteria
Portfolio selection focuses on allocating the capital to a set of securities such that the profit or the risks can be optimized. Due to the uncertainty of the real-world life, the return parameters always take uncertain information in the realistic environments because of the scarcity of the a prior...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2016/8417643 |
Summary: | Portfolio selection focuses on allocating the capital to a set of securities such that the profit or the risks can be optimized. Due to the uncertainty of the real-world life, the return parameters always take uncertain information in the realistic environments because of the scarcity of the a priori knowledge or uncertain disturbances. This paper particularly considers a portfolio selection process in the stochastic environment, where the return parameters are characterized by sample-based correlated random variables. To decrease the decision risks, three evaluation criteria are proposed to generate the reliable portfolio selection plans, including max-min reliability criterion, percentile reliability criterion, and expected disutility criterion. The equivalent linear (mixed integer) programming models are also deduced for different evaluation strategies. A genetic algorithm with a polishing strategy is designed to search for the approximate optimal solutions of the proposed models. Finally, a series of numerical experiments are implemented to demonstrate the effectiveness and performance of the proposed approaches. |
---|---|
ISSN: | 1026-0226 1607-887X |