Experimental methods for screening parameters influencing the growth to product yield (Y<sub>(x/CH4)</sub>) of a biological methane production (BMP) process performed with <em>Methanothermobacter marburgensis</em>

1. Specht M, Brellochs J, Frick V, et al. (2010) Storage of renewable energy in the natural gas grid. <em>Erdoel, Erdgas, Kohle</em> 126: 342-345.<br />2. Thauer RK, Kaster AK, Goenrich M, et al. (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H<sub&...

Full description

Bibliographic Details
Main Authors: Sébastien Bernacchi, Simon Rittmann, Arne H. Seifert, Alexander Krajete, Christoph Herwig
Format: Article
Language:English
Published: AIMS Press 2014-12-01
Series:AIMS Bioengineering
Subjects:
Online Access:http://www.aimspress.com/Bioengineering/article/157/fulltext.html
id doaj-c235b2c340d847e0942c3c35be6684dd
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Sébastien Bernacchi
Simon Rittmann
Arne H. Seifert
Alexander Krajete
Christoph Herwig
spellingShingle Sébastien Bernacchi
Simon Rittmann
Arne H. Seifert
Alexander Krajete
Christoph Herwig
Experimental methods for screening parameters influencing the growth to product yield (Y<sub>(x/CH4)</sub>) of a biological methane production (BMP) process performed with <em>Methanothermobacter marburgensis</em>
AIMS Bioengineering
Design of Experiments
chemostat
dynamic experiments
bioprocess quantification
carbon balance, biological methanogenesis, bioCH<sub>4</sub>
author_facet Sébastien Bernacchi
Simon Rittmann
Arne H. Seifert
Alexander Krajete
Christoph Herwig
author_sort Sébastien Bernacchi
title Experimental methods for screening parameters influencing the growth to product yield (Y<sub>(x/CH4)</sub>) of a biological methane production (BMP) process performed with <em>Methanothermobacter marburgensis</em>
title_short Experimental methods for screening parameters influencing the growth to product yield (Y<sub>(x/CH4)</sub>) of a biological methane production (BMP) process performed with <em>Methanothermobacter marburgensis</em>
title_full Experimental methods for screening parameters influencing the growth to product yield (Y<sub>(x/CH4)</sub>) of a biological methane production (BMP) process performed with <em>Methanothermobacter marburgensis</em>
title_fullStr Experimental methods for screening parameters influencing the growth to product yield (Y<sub>(x/CH4)</sub>) of a biological methane production (BMP) process performed with <em>Methanothermobacter marburgensis</em>
title_full_unstemmed Experimental methods for screening parameters influencing the growth to product yield (Y<sub>(x/CH4)</sub>) of a biological methane production (BMP) process performed with <em>Methanothermobacter marburgensis</em>
title_sort experimental methods for screening parameters influencing the growth to product yield (y<sub>(x/ch4)</sub>) of a biological methane production (bmp) process performed with <em>methanothermobacter marburgensis</em>
publisher AIMS Press
series AIMS Bioengineering
issn 2375-1495
publishDate 2014-12-01
description 1. Specht M, Brellochs J, Frick V, et al. (2010) Storage of renewable energy in the natural gas grid. <em>Erdoel, Erdgas, Kohle</em> 126: 342-345.<br />2. Thauer RK, Kaster AK, Goenrich M, et al. (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H<sub>2</sub> storage. <em>Annu Rev Biochem</em> 79: 507-536.<br />3. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. <em>Ann N Y Acad Sci</em> 1125: 171-189.<br />4. Kaster AK, Goenrich M, Seedorf H, et al. (2011) More than 200 genes required for methane formation from H<sub>2</sub> and CO<sub>2</sub> and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. <em>Archaea ID</em> 973848: 1-23.<br />5. Seifert AH, Rittmann S, Herwig C (2014) Analysis of process related factors to increase volumetric productivity and quality of biomethane with <em>Methanothermobacter marburgensis Appl Energ</em> 132: 155-162.<br />6. Bernacchi S, Weissgram M, Wukovits W, et al. (2014) Process efficiency simulation for key process parameters in biological methanogenesis. <em>AIMS bioengineering</em> 1: 53-71.<br />7. Thauer RK, Kaster AK, Seedorf H, et al. (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. <em>Nat Rev Microbiol</em> 6: 579-591.<br />8. Schill N, van Gulik WM, Voisard D, et al. (1996) Continuous cultures limited by a gaseous substrate: development of a simple, unstructure mathematical model and experimental verification with Methanobacterium thermoautotrophicum. <em>Biotechnol Bioeng</em> 51: 645-658.<br />9. Jud G, Schneider K, Bachofen R (1997) The role of hydrogen mass transfer for the growth kinetics of Methanobacterium thermoautotrophicum in batch and chemostat cultures. <em>J Ind Microbiol Biotechnol</em> 19: 246-251.<br />10. Tsao JH, Kaneshiro SM, Yu SS, et al. (1994) Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen. <em>Biotechnol Bioeng</em> 43: 258-261.<br />11. Schill N, van Gulik WM, Voisard D, et al. (1996) Continuous cultures limited by a gaseous substrate: development of a simple, unstructured mathematical model and experimental verification with Methanobacterium thermoautotrophicum. <em>Biotechnol Bioeng</em> 51: 645-658.<br />12. Peillex JP, Fardeau ML, Belaich JP (1990) Growth of Methanobacterium thermoautotrophicum on hydrogen-carbon dioxide: high methane productivities in continuous culture. <em>Biomass</em> 21:315-321.<br />13. Nishimura N, Kitaura S, Mimura A, et al. (1992) Cultivation of thermophilic methanogen KN-15 on hydrogen-carbon dioxide under pressurized conditions. <em>J Ferment Bioeng</em> 73: 477-480.<br />14. Morii H, Koga Y, Nagai S (1987) Energetic analysis of the growth of Methanobrevibacter arboriphilus A2 in hydrogen-limited continuous cultures. <em>Biotechnol Bioeng</em> 29: 310-315.<br />15. de Poorter LMI, Geerts WJ, Keltjens JT (2007) Coupling of Methanothermobacter thermautotrophicus methane formation and growth in fed-batch and continuous cultures under different H<sub>2</sub> gassing regimens. <em>Appl Environ Microbiol</em> 73: 740-749.<br />16. Schoenheit P, Moll J, Thauer RK (1980) Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum. <em>Arch Microbiol</em> 127: 59-65.<br />17. Gerhard E, Butsch BM, Marison IW, et al. (1993) Improved growth and methane production conditions for Methanobacterium thermoautotrophicum. <em>Appl Microbiol Biotechnol</em> 40: 432-437.<br />18. Seifert AH, Rittmann S, Bernacchi S, et al. (2013) Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. <em>Bioresour Technol</em> 136:747-751.<br />19. Fardeau ML, Peillex JP, Belaich JP (1987) Energetics of the growth of Methanobacterium thermoautotrophicum and Methanococcus thermolithotrophicus on ammonium chloride and dinitrogen. <em>Arch Microbiol</em> 148: 128-131.<br />20. Fardeau ML, Belaich JP (1986) Energetics of the growth of Methanococcus thermolithotrophicus. <em>Arch Microbiol</em> 144: 381-385.<br />21. Morgan RM, Pihl TD, Nolling J (1997) Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum Delta H. <em>J Bacteriol</em> 179:889-898.<br />22. Archer DB (1985) Uncoupling of methanogenesis from growth of Methanosarcina barkeri by phosphate limitation. <em>Appl Environ Microbiol</em> 50: 1233-1237.<br />23. Rittmann S, Seifert A, Herwig C (2012) Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H<sub>2</sub> and CO<sub>2</sub>. <em>Biomass Bioenerg</em> 36: 293-301.<br />24. Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. <em>Arch Microbiol</em> 117: 61-66.<br />25. Schoenheit P, Moll J, Thauer RK (1979) Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. <em>Arch Microbiol</em> 123: 105-107.<br />26. Bonacker LG, Baudner S, Thauer RK (1992) Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera. <em>Eur J Biochem</em> 206: 87-92.<br />27. Bonacker LG, Baudner S, Moerschel E, et al. (1993) Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. <em>Eur J Biochem</em> 217:587-595.<br />28. Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? <em>Trends Biotechnol</em> 27: 287-297.<br />29. Wang J, Wan W (2008) Optimization of fermentative hydrogen production process by response surface methodology. <em>Int J Hydrogen Energy</em> 33: 6976-6984.<br />30. Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. <em>Microbial Cell Factories</em> 11:115.<br />31. Spadiut O, Rittmann S, Dietzsch C, et al. (2013) Dynamic process conditions in bioprocess development. <em>Eng Life Sci</em> 13: 88-101.<br />32. Rittmann S, Seifert A, Herwig C (2013) Essential prerequisites for successful bioprocess development of biological CH<sub>4</sub> production from CO<sub>2</sub> and H<sub>2</sub>. <em>Crit Rev Biotechnol</em> 1-11.<br />33. Costa KC, Yoon SH, Pan M, et al. (2013) Effects of H<sub>2</sub> and formate on growth yield and regulation of methanogenesis in Methanococcus maripaludis. <em>J Bacteriol</em> 195: 1456-1462.<br />34. Haydock AK, Porat I, Whitman WB, et al. (2004) Continuous culture of Methanococcus maripaludis under defined nutrient conditions. <em>FEMS Microbiol Lett</em> 238: 85-91.
topic Design of Experiments
chemostat
dynamic experiments
bioprocess quantification
carbon balance, biological methanogenesis, bioCH<sub>4</sub>
url http://www.aimspress.com/Bioengineering/article/157/fulltext.html
work_keys_str_mv AT sebastienbernacchi experimentalmethodsforscreeningparametersinfluencingthegrowthtoproductyieldysubxch4subofabiologicalmethaneproductionbmpprocessperformedwithemmethanothermobactermarburgensisem
AT simonrittmann experimentalmethodsforscreeningparametersinfluencingthegrowthtoproductyieldysubxch4subofabiologicalmethaneproductionbmpprocessperformedwithemmethanothermobactermarburgensisem
AT arnehseifert experimentalmethodsforscreeningparametersinfluencingthegrowthtoproductyieldysubxch4subofabiologicalmethaneproductionbmpprocessperformedwithemmethanothermobactermarburgensisem
AT alexanderkrajete experimentalmethodsforscreeningparametersinfluencingthegrowthtoproductyieldysubxch4subofabiologicalmethaneproductionbmpprocessperformedwithemmethanothermobactermarburgensisem
AT christophherwig experimentalmethodsforscreeningparametersinfluencingthegrowthtoproductyieldysubxch4subofabiologicalmethaneproductionbmpprocessperformedwithemmethanothermobactermarburgensisem
_version_ 1724905038124417024
spelling doaj-c235b2c340d847e0942c3c35be6684dd2020-11-25T02:13:28ZengAIMS PressAIMS Bioengineering2375-14952014-12-0112728710.3934/bioeng.2014.2.7220140201Experimental methods for screening parameters influencing the growth to product yield (Y<sub>(x/CH4)</sub>) of a biological methane production (BMP) process performed with <em>Methanothermobacter marburgensis</em>Sébastien Bernacchi0Simon RittmannArne H. SeifertAlexander Krajete1Christoph Herwig2Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, 1060 Vienna, AustriaKrajete GmbH, Scharitzerstraße 30, 4020 Linz, AustriInstitute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, 1060 Vienna, Austria1. Specht M, Brellochs J, Frick V, et al. (2010) Storage of renewable energy in the natural gas grid. <em>Erdoel, Erdgas, Kohle</em> 126: 342-345.<br />2. Thauer RK, Kaster AK, Goenrich M, et al. (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H<sub>2</sub> storage. <em>Annu Rev Biochem</em> 79: 507-536.<br />3. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. <em>Ann N Y Acad Sci</em> 1125: 171-189.<br />4. Kaster AK, Goenrich M, Seedorf H, et al. (2011) More than 200 genes required for methane formation from H<sub>2</sub> and CO<sub>2</sub> and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. <em>Archaea ID</em> 973848: 1-23.<br />5. Seifert AH, Rittmann S, Herwig C (2014) Analysis of process related factors to increase volumetric productivity and quality of biomethane with <em>Methanothermobacter marburgensis Appl Energ</em> 132: 155-162.<br />6. Bernacchi S, Weissgram M, Wukovits W, et al. (2014) Process efficiency simulation for key process parameters in biological methanogenesis. <em>AIMS bioengineering</em> 1: 53-71.<br />7. Thauer RK, Kaster AK, Seedorf H, et al. (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. <em>Nat Rev Microbiol</em> 6: 579-591.<br />8. Schill N, van Gulik WM, Voisard D, et al. (1996) Continuous cultures limited by a gaseous substrate: development of a simple, unstructure mathematical model and experimental verification with Methanobacterium thermoautotrophicum. <em>Biotechnol Bioeng</em> 51: 645-658.<br />9. Jud G, Schneider K, Bachofen R (1997) The role of hydrogen mass transfer for the growth kinetics of Methanobacterium thermoautotrophicum in batch and chemostat cultures. <em>J Ind Microbiol Biotechnol</em> 19: 246-251.<br />10. Tsao JH, Kaneshiro SM, Yu SS, et al. (1994) Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen. <em>Biotechnol Bioeng</em> 43: 258-261.<br />11. Schill N, van Gulik WM, Voisard D, et al. (1996) Continuous cultures limited by a gaseous substrate: development of a simple, unstructured mathematical model and experimental verification with Methanobacterium thermoautotrophicum. <em>Biotechnol Bioeng</em> 51: 645-658.<br />12. Peillex JP, Fardeau ML, Belaich JP (1990) Growth of Methanobacterium thermoautotrophicum on hydrogen-carbon dioxide: high methane productivities in continuous culture. <em>Biomass</em> 21:315-321.<br />13. Nishimura N, Kitaura S, Mimura A, et al. (1992) Cultivation of thermophilic methanogen KN-15 on hydrogen-carbon dioxide under pressurized conditions. <em>J Ferment Bioeng</em> 73: 477-480.<br />14. Morii H, Koga Y, Nagai S (1987) Energetic analysis of the growth of Methanobrevibacter arboriphilus A2 in hydrogen-limited continuous cultures. <em>Biotechnol Bioeng</em> 29: 310-315.<br />15. de Poorter LMI, Geerts WJ, Keltjens JT (2007) Coupling of Methanothermobacter thermautotrophicus methane formation and growth in fed-batch and continuous cultures under different H<sub>2</sub> gassing regimens. <em>Appl Environ Microbiol</em> 73: 740-749.<br />16. Schoenheit P, Moll J, Thauer RK (1980) Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum. <em>Arch Microbiol</em> 127: 59-65.<br />17. Gerhard E, Butsch BM, Marison IW, et al. (1993) Improved growth and methane production conditions for Methanobacterium thermoautotrophicum. <em>Appl Microbiol Biotechnol</em> 40: 432-437.<br />18. Seifert AH, Rittmann S, Bernacchi S, et al. (2013) Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. <em>Bioresour Technol</em> 136:747-751.<br />19. Fardeau ML, Peillex JP, Belaich JP (1987) Energetics of the growth of Methanobacterium thermoautotrophicum and Methanococcus thermolithotrophicus on ammonium chloride and dinitrogen. <em>Arch Microbiol</em> 148: 128-131.<br />20. Fardeau ML, Belaich JP (1986) Energetics of the growth of Methanococcus thermolithotrophicus. <em>Arch Microbiol</em> 144: 381-385.<br />21. Morgan RM, Pihl TD, Nolling J (1997) Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum Delta H. <em>J Bacteriol</em> 179:889-898.<br />22. Archer DB (1985) Uncoupling of methanogenesis from growth of Methanosarcina barkeri by phosphate limitation. <em>Appl Environ Microbiol</em> 50: 1233-1237.<br />23. Rittmann S, Seifert A, Herwig C (2012) Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H<sub>2</sub> and CO<sub>2</sub>. <em>Biomass Bioenerg</em> 36: 293-301.<br />24. Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. <em>Arch Microbiol</em> 117: 61-66.<br />25. Schoenheit P, Moll J, Thauer RK (1979) Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. <em>Arch Microbiol</em> 123: 105-107.<br />26. Bonacker LG, Baudner S, Thauer RK (1992) Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera. <em>Eur J Biochem</em> 206: 87-92.<br />27. Bonacker LG, Baudner S, Moerschel E, et al. (1993) Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. <em>Eur J Biochem</em> 217:587-595.<br />28. Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? <em>Trends Biotechnol</em> 27: 287-297.<br />29. Wang J, Wan W (2008) Optimization of fermentative hydrogen production process by response surface methodology. <em>Int J Hydrogen Energy</em> 33: 6976-6984.<br />30. Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. <em>Microbial Cell Factories</em> 11:115.<br />31. Spadiut O, Rittmann S, Dietzsch C, et al. (2013) Dynamic process conditions in bioprocess development. <em>Eng Life Sci</em> 13: 88-101.<br />32. Rittmann S, Seifert A, Herwig C (2013) Essential prerequisites for successful bioprocess development of biological CH<sub>4</sub> production from CO<sub>2</sub> and H<sub>2</sub>. <em>Crit Rev Biotechnol</em> 1-11.<br />33. Costa KC, Yoon SH, Pan M, et al. (2013) Effects of H<sub>2</sub> and formate on growth yield and regulation of methanogenesis in Methanococcus maripaludis. <em>J Bacteriol</em> 195: 1456-1462.<br />34. Haydock AK, Porat I, Whitman WB, et al. (2004) Continuous culture of Methanococcus maripaludis under defined nutrient conditions. <em>FEMS Microbiol Lett</em> 238: 85-91.http://www.aimspress.com/Bioengineering/article/157/fulltext.htmlDesign of Experimentschemostatdynamic experimentsbioprocess quantificationcarbon balance, biological methanogenesis, bioCH<sub>4</sub>