Experimental methods for screening parameters influencing the growth to product yield (Y<sub>(x/CH4)</sub>) of a biological methane production (BMP) process performed with <em>Methanothermobacter marburgensis</em>

1. Specht M, Brellochs J, Frick V, et al. (2010) Storage of renewable energy in the natural gas grid. <em>Erdoel, Erdgas, Kohle</em> 126: 342-345.<br />2. Thauer RK, Kaster AK, Goenrich M, et al. (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H<sub&...

Full description

Bibliographic Details
Main Authors: Sébastien Bernacchi, Simon Rittmann, Arne H. Seifert, Alexander Krajete, Christoph Herwig
Format: Article
Language:English
Published: AIMS Press 2014-12-01
Series:AIMS Bioengineering
Subjects:
Online Access:http://www.aimspress.com/Bioengineering/article/157/fulltext.html
Description
Summary:1. Specht M, Brellochs J, Frick V, et al. (2010) Storage of renewable energy in the natural gas grid. <em>Erdoel, Erdgas, Kohle</em> 126: 342-345.<br />2. Thauer RK, Kaster AK, Goenrich M, et al. (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H<sub>2</sub> storage. <em>Annu Rev Biochem</em> 79: 507-536.<br />3. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. <em>Ann N Y Acad Sci</em> 1125: 171-189.<br />4. Kaster AK, Goenrich M, Seedorf H, et al. (2011) More than 200 genes required for methane formation from H<sub>2</sub> and CO<sub>2</sub> and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. <em>Archaea ID</em> 973848: 1-23.<br />5. Seifert AH, Rittmann S, Herwig C (2014) Analysis of process related factors to increase volumetric productivity and quality of biomethane with <em>Methanothermobacter marburgensis Appl Energ</em> 132: 155-162.<br />6. Bernacchi S, Weissgram M, Wukovits W, et al. (2014) Process efficiency simulation for key process parameters in biological methanogenesis. <em>AIMS bioengineering</em> 1: 53-71.<br />7. Thauer RK, Kaster AK, Seedorf H, et al. (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. <em>Nat Rev Microbiol</em> 6: 579-591.<br />8. Schill N, van Gulik WM, Voisard D, et al. (1996) Continuous cultures limited by a gaseous substrate: development of a simple, unstructure mathematical model and experimental verification with Methanobacterium thermoautotrophicum. <em>Biotechnol Bioeng</em> 51: 645-658.<br />9. Jud G, Schneider K, Bachofen R (1997) The role of hydrogen mass transfer for the growth kinetics of Methanobacterium thermoautotrophicum in batch and chemostat cultures. <em>J Ind Microbiol Biotechnol</em> 19: 246-251.<br />10. Tsao JH, Kaneshiro SM, Yu SS, et al. (1994) Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen. <em>Biotechnol Bioeng</em> 43: 258-261.<br />11. Schill N, van Gulik WM, Voisard D, et al. (1996) Continuous cultures limited by a gaseous substrate: development of a simple, unstructured mathematical model and experimental verification with Methanobacterium thermoautotrophicum. <em>Biotechnol Bioeng</em> 51: 645-658.<br />12. Peillex JP, Fardeau ML, Belaich JP (1990) Growth of Methanobacterium thermoautotrophicum on hydrogen-carbon dioxide: high methane productivities in continuous culture. <em>Biomass</em> 21:315-321.<br />13. Nishimura N, Kitaura S, Mimura A, et al. (1992) Cultivation of thermophilic methanogen KN-15 on hydrogen-carbon dioxide under pressurized conditions. <em>J Ferment Bioeng</em> 73: 477-480.<br />14. Morii H, Koga Y, Nagai S (1987) Energetic analysis of the growth of Methanobrevibacter arboriphilus A2 in hydrogen-limited continuous cultures. <em>Biotechnol Bioeng</em> 29: 310-315.<br />15. de Poorter LMI, Geerts WJ, Keltjens JT (2007) Coupling of Methanothermobacter thermautotrophicus methane formation and growth in fed-batch and continuous cultures under different H<sub>2</sub> gassing regimens. <em>Appl Environ Microbiol</em> 73: 740-749.<br />16. Schoenheit P, Moll J, Thauer RK (1980) Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum. <em>Arch Microbiol</em> 127: 59-65.<br />17. Gerhard E, Butsch BM, Marison IW, et al. (1993) Improved growth and methane production conditions for Methanobacterium thermoautotrophicum. <em>Appl Microbiol Biotechnol</em> 40: 432-437.<br />18. Seifert AH, Rittmann S, Bernacchi S, et al. (2013) Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. <em>Bioresour Technol</em> 136:747-751.<br />19. Fardeau ML, Peillex JP, Belaich JP (1987) Energetics of the growth of Methanobacterium thermoautotrophicum and Methanococcus thermolithotrophicus on ammonium chloride and dinitrogen. <em>Arch Microbiol</em> 148: 128-131.<br />20. Fardeau ML, Belaich JP (1986) Energetics of the growth of Methanococcus thermolithotrophicus. <em>Arch Microbiol</em> 144: 381-385.<br />21. Morgan RM, Pihl TD, Nolling J (1997) Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum Delta H. <em>J Bacteriol</em> 179:889-898.<br />22. Archer DB (1985) Uncoupling of methanogenesis from growth of Methanosarcina barkeri by phosphate limitation. <em>Appl Environ Microbiol</em> 50: 1233-1237.<br />23. Rittmann S, Seifert A, Herwig C (2012) Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H<sub>2</sub> and CO<sub>2</sub>. <em>Biomass Bioenerg</em> 36: 293-301.<br />24. Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. <em>Arch Microbiol</em> 117: 61-66.<br />25. Schoenheit P, Moll J, Thauer RK (1979) Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. <em>Arch Microbiol</em> 123: 105-107.<br />26. Bonacker LG, Baudner S, Thauer RK (1992) Differential expression of the two methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum as determined immunochemically via isoenzyme-specific antisera. <em>Eur J Biochem</em> 206: 87-92.<br />27. Bonacker LG, Baudner S, Moerschel E, et al. (1993) Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. <em>Eur J Biochem</em> 217:587-595.<br />28. Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? <em>Trends Biotechnol</em> 27: 287-297.<br />29. Wang J, Wan W (2008) Optimization of fermentative hydrogen production process by response surface methodology. <em>Int J Hydrogen Energy</em> 33: 6976-6984.<br />30. Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. <em>Microbial Cell Factories</em> 11:115.<br />31. Spadiut O, Rittmann S, Dietzsch C, et al. (2013) Dynamic process conditions in bioprocess development. <em>Eng Life Sci</em> 13: 88-101.<br />32. Rittmann S, Seifert A, Herwig C (2013) Essential prerequisites for successful bioprocess development of biological CH<sub>4</sub> production from CO<sub>2</sub> and H<sub>2</sub>. <em>Crit Rev Biotechnol</em> 1-11.<br />33. Costa KC, Yoon SH, Pan M, et al. (2013) Effects of H<sub>2</sub> and formate on growth yield and regulation of methanogenesis in Methanococcus maripaludis. <em>J Bacteriol</em> 195: 1456-1462.<br />34. Haydock AK, Porat I, Whitman WB, et al. (2004) Continuous culture of Methanococcus maripaludis under defined nutrient conditions. <em>FEMS Microbiol Lett</em> 238: 85-91.
ISSN:2375-1495