Defogging Technology Based on Dual-Channel Sensor Information Fusion of Near-Infrared and Visible Light

Since the method to remove fog from images is complicated and detail loss and color distortion could occur to the defogged images, a defogging method based on near-infrared and visible image fusion is put forward in this paper. The algorithm in this paper uses the near-infrared image with rich detai...

Full description

Bibliographic Details
Main Authors: Yubin Yuan, Yu Shen, Jing Peng, Lin Wang, Hongguo Zhang
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Journal of Sensors
Online Access:http://dx.doi.org/10.1155/2020/8818650
Description
Summary:Since the method to remove fog from images is complicated and detail loss and color distortion could occur to the defogged images, a defogging method based on near-infrared and visible image fusion is put forward in this paper. The algorithm in this paper uses the near-infrared image with rich details as a new data source and adopts the image fusion method to obtain a defog image with rich details and high color recovery. First, the colorful visible image is converted into HSI color space to obtain an intensity channel image, color channel image, and saturation channel image. The intensity channel image is fused with a near-infrared image and defogged, and then it is decomposed by Nonsubsampled Shearlet Transform. The obtained high-frequency coefficient is filtered by preserving the edge with a double exponential edge smoothing filter, while low-frequency antisharpening masking treatment is conducted on the low-frequency coefficient. The new intensity channel image could be obtained based on the fusion rule and by reciprocal transformation. Then, in color treatment of the visible image, the degradation model of the saturation image is established, which estimates the parameters based on the principle of dark primary color to obtain the estimated saturation image. Finally, the new intensity channel image, the estimated saturation image, and the primary color image are reflected to RGB space to obtain the fusion image, which is enhanced by color and sharpness correction. In order to prove the effectiveness of the algorithm, the dense fog image and the thin fog image are compared with the popular single image defogging and multiple image defogging algorithms and the visible light-near infrared fusion defogging algorithm based on deep learning. The experimental results show that the proposed algorithm is better in improving the edge contrast and the visual sharpness of the image than the existing high-efficiency defogging method.
ISSN:1687-725X
1687-7268