Laser Surface Alloying of Austenitic 316L Steel with Boron and Some Metallic Elements: Properties
Austenitic 316L stainless steel is known for its good resistance to corrosion and oxidation. However, under conditions of appreciable mechanical wear, this steel had to demonstrate suitable wear protection. In this study, laser surface alloying with boron and some metallic elements was used in order...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/14/11/2987 |
id |
doaj-c20ed8877e8e41cb92b405c1809e0085 |
---|---|
record_format |
Article |
spelling |
doaj-c20ed8877e8e41cb92b405c1809e00852021-06-01T01:47:55ZengMDPI AGMaterials1996-19442021-05-01142987298710.3390/ma14112987Laser Surface Alloying of Austenitic 316L Steel with Boron and Some Metallic Elements: PropertiesMichał Kulka0Daria Mikołajczak1Piotr Dziarski2Dominika Panfil-Pryka3Institute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznan, PolandWSK Poznan Ltd., Unii Lubelskiej Street 3, 61-249 Poznan, PolandInstitute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznan, PolandInstitute of Materials Science and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie 5, 60-965 Poznan, PolandAustenitic 316L stainless steel is known for its good resistance to corrosion and oxidation. However, under conditions of appreciable mechanical wear, this steel had to demonstrate suitable wear protection. In this study, laser surface alloying with boron and some metallic elements was used in order to improve the hardness and wear behavior of this material. The microstructure was described in the previous paper in detail. The microhardness was measured using Vickers method. The “block-on-ring” technique was used in order to evaluate the wear resistance of laser-alloyed layers, whereas, the potentiodynamic method was applied to evaluate their corrosion behavior. The produced laser-alloyed layers consisted of hard ceramic phases (Fe<sub>2</sub>B, Cr<sub>2</sub>B, Ni<sub>2</sub>B or Ni<sub>3</sub>B borides) in a soft austenitic matrix. The significant increase in hardness and wear resistance was observed in the case of all the laser-alloyed layers in comparison to the untreated 316L steel. The predominant abrasive wear was accompanied by adhesive and oxidative wear evidenced by shallow grooves, adhesion craters and the presence of oxides. The corrosion resistance of laser-alloyed layers was not considerably diminished. The laser-alloyed layer with boron and nickel was the best in this regard, obtaining nearly the same corrosion behavior as the untreated 316L steel.https://www.mdpi.com/1996-1944/14/11/2987laser surface alloyinglaser boriding316L steelhardnesswear resistancecorrosion resistance |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Michał Kulka Daria Mikołajczak Piotr Dziarski Dominika Panfil-Pryka |
spellingShingle |
Michał Kulka Daria Mikołajczak Piotr Dziarski Dominika Panfil-Pryka Laser Surface Alloying of Austenitic 316L Steel with Boron and Some Metallic Elements: Properties Materials laser surface alloying laser boriding 316L steel hardness wear resistance corrosion resistance |
author_facet |
Michał Kulka Daria Mikołajczak Piotr Dziarski Dominika Panfil-Pryka |
author_sort |
Michał Kulka |
title |
Laser Surface Alloying of Austenitic 316L Steel with Boron and Some Metallic Elements: Properties |
title_short |
Laser Surface Alloying of Austenitic 316L Steel with Boron and Some Metallic Elements: Properties |
title_full |
Laser Surface Alloying of Austenitic 316L Steel with Boron and Some Metallic Elements: Properties |
title_fullStr |
Laser Surface Alloying of Austenitic 316L Steel with Boron and Some Metallic Elements: Properties |
title_full_unstemmed |
Laser Surface Alloying of Austenitic 316L Steel with Boron and Some Metallic Elements: Properties |
title_sort |
laser surface alloying of austenitic 316l steel with boron and some metallic elements: properties |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2021-05-01 |
description |
Austenitic 316L stainless steel is known for its good resistance to corrosion and oxidation. However, under conditions of appreciable mechanical wear, this steel had to demonstrate suitable wear protection. In this study, laser surface alloying with boron and some metallic elements was used in order to improve the hardness and wear behavior of this material. The microstructure was described in the previous paper in detail. The microhardness was measured using Vickers method. The “block-on-ring” technique was used in order to evaluate the wear resistance of laser-alloyed layers, whereas, the potentiodynamic method was applied to evaluate their corrosion behavior. The produced laser-alloyed layers consisted of hard ceramic phases (Fe<sub>2</sub>B, Cr<sub>2</sub>B, Ni<sub>2</sub>B or Ni<sub>3</sub>B borides) in a soft austenitic matrix. The significant increase in hardness and wear resistance was observed in the case of all the laser-alloyed layers in comparison to the untreated 316L steel. The predominant abrasive wear was accompanied by adhesive and oxidative wear evidenced by shallow grooves, adhesion craters and the presence of oxides. The corrosion resistance of laser-alloyed layers was not considerably diminished. The laser-alloyed layer with boron and nickel was the best in this regard, obtaining nearly the same corrosion behavior as the untreated 316L steel. |
topic |
laser surface alloying laser boriding 316L steel hardness wear resistance corrosion resistance |
url |
https://www.mdpi.com/1996-1944/14/11/2987 |
work_keys_str_mv |
AT michałkulka lasersurfacealloyingofaustenitic316lsteelwithboronandsomemetallicelementsproperties AT dariamikołajczak lasersurfacealloyingofaustenitic316lsteelwithboronandsomemetallicelementsproperties AT piotrdziarski lasersurfacealloyingofaustenitic316lsteelwithboronandsomemetallicelementsproperties AT dominikapanfilpryka lasersurfacealloyingofaustenitic316lsteelwithboronandsomemetallicelementsproperties |
_version_ |
1721411510331244544 |