Improved Heat Exchanger Lifecycle Prognostic Methods for Enhanced Light Water Reactor Sustainability

As the licenses of many nuclear power plants in the US and abroad are being extended, accurate knowledge of system and component condition is becoming increasingly important. The US Department of Energy (DOE) has funded a project with the primary goal of developing lifecycle prognostic methods to ge...

Full description

Bibliographic Details
Main Authors: Zachary Welz, Alan Nam, Michael Sharp, J. Wesley Hines, Belle R. Upadhyaya
Format: Article
Language:English
Published: The Prognostics and Health Management Society 2015-12-01
Series:International Journal of Prognostics and Health Management
Subjects:
Online Access:https://papers.phmsociety.org/index.php/ijphm/article/view/2283
Description
Summary:As the licenses of many nuclear power plants in the US and abroad are being extended, accurate knowledge of system and component condition is becoming increasingly important. The US Department of Energy (DOE) has funded a project with the primary goal of developing lifecycle prognostic methods to generate accurate and continuous Remaining Useful Life (RUL) estimates as components transition through unique stages of the component lifecycle. Specific emphasis has been placed on creating and transitioning between three distinct stages of operational availability. These stages correspond to Beginning Of Life (BOL) where little or no operational information is available, early onset operations at various expected and observed stress levels where there is the onset of detectable degradation, and degradation towards the eventual End Of Life (EOL). This paper provides an application overview of a developed lifecycle prognostic approach and applies it to a heat exchanger fouling test bed under accelerated degradation conditions resulting in an increased understanding of system degradation. Bayesian and Bootstrap Aggregation methods are applied to show improvements in RUL predictions over traditional methods that do not utilize these methods, thereby improving the lifecycle prognostic model for the component. The analyses of results from applying these lifecycle prognostic algorithms to a heat exchanger fouling experiment are detailed.
ISSN:2153-2648
2153-2648