A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay

<p/> <p>We deal in this paper with the mild solution for the semilinear fractional differential equation of neutral type with infinite delay: <inline-formula><graphic file="1687-1847-2010-674630-i1.gif"/></inline-formula>, <inline-formula><graphic fil...

Full description

Bibliographic Details
Main Authors: N&apos;Gu&#233;r&#233;kata GastonM, Mophou GisleM
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2010/674630
id doaj-c1c4cff62f30457c8d868dfa356d7b02
record_format Article
spelling doaj-c1c4cff62f30457c8d868dfa356d7b022020-11-24T21:08:15ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472010-01-0120101674630A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite DelayN&apos;Gu&#233;r&#233;kata GastonMMophou GisleM<p/> <p>We deal in this paper with the mild solution for the semilinear fractional differential equation of neutral type with infinite delay: <inline-formula><graphic file="1687-1847-2010-674630-i1.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-674630-i2.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-674630-i3.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-674630-i4.gif"/></inline-formula>, with <inline-formula><graphic file="1687-1847-2010-674630-i5.gif"/></inline-formula> and <inline-formula><graphic file="1687-1847-2010-674630-i6.gif"/></inline-formula>. We prove the existence (and uniqueness) of solutions, assuming that <inline-formula><graphic file="1687-1847-2010-674630-i7.gif"/></inline-formula> is a linear closed operator which generates an analytic semigroup <inline-formula><graphic file="1687-1847-2010-674630-i8.gif"/></inline-formula> on a Banach space <inline-formula><graphic file="1687-1847-2010-674630-i9.gif"/></inline-formula> by means of the Banach's fixed point theorem. This generalizes some recent results.</p> http://www.advancesindifferenceequations.com/content/2010/674630
collection DOAJ
language English
format Article
sources DOAJ
author N&apos;Gu&#233;r&#233;kata GastonM
Mophou GisleM
spellingShingle N&apos;Gu&#233;r&#233;kata GastonM
Mophou GisleM
A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay
Advances in Difference Equations
author_facet N&apos;Gu&#233;r&#233;kata GastonM
Mophou GisleM
author_sort N&apos;Gu&#233;r&#233;kata GastonM
title A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay
title_short A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay
title_full A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay
title_fullStr A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay
title_full_unstemmed A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay
title_sort note on a semilinear fractional differential equation of neutral type with infinite delay
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1839
1687-1847
publishDate 2010-01-01
description <p/> <p>We deal in this paper with the mild solution for the semilinear fractional differential equation of neutral type with infinite delay: <inline-formula><graphic file="1687-1847-2010-674630-i1.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-674630-i2.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-674630-i3.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-674630-i4.gif"/></inline-formula>, with <inline-formula><graphic file="1687-1847-2010-674630-i5.gif"/></inline-formula> and <inline-formula><graphic file="1687-1847-2010-674630-i6.gif"/></inline-formula>. We prove the existence (and uniqueness) of solutions, assuming that <inline-formula><graphic file="1687-1847-2010-674630-i7.gif"/></inline-formula> is a linear closed operator which generates an analytic semigroup <inline-formula><graphic file="1687-1847-2010-674630-i8.gif"/></inline-formula> on a Banach space <inline-formula><graphic file="1687-1847-2010-674630-i9.gif"/></inline-formula> by means of the Banach's fixed point theorem. This generalizes some recent results.</p>
url http://www.advancesindifferenceequations.com/content/2010/674630
work_keys_str_mv AT naposgu233r233katagastonm anoteonasemilinearfractionaldifferentialequationofneutraltypewithinfinitedelay
AT mophougislem anoteonasemilinearfractionaldifferentialequationofneutraltypewithinfinitedelay
AT naposgu233r233katagastonm noteonasemilinearfractionaldifferentialequationofneutraltypewithinfinitedelay
AT mophougislem noteonasemilinearfractionaldifferentialequationofneutraltypewithinfinitedelay
_version_ 1716760268023791616