A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay
<p/> <p>We deal in this paper with the mild solution for the semilinear fractional differential equation of neutral type with infinite delay: <inline-formula><graphic file="1687-1847-2010-674630-i1.gif"/></inline-formula>, <inline-formula><graphic fil...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Advances in Difference Equations |
Online Access: | http://www.advancesindifferenceequations.com/content/2010/674630 |
id |
doaj-c1c4cff62f30457c8d868dfa356d7b02 |
---|---|
record_format |
Article |
spelling |
doaj-c1c4cff62f30457c8d868dfa356d7b022020-11-24T21:08:15ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472010-01-0120101674630A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite DelayN'Guérékata GastonMMophou GisleM<p/> <p>We deal in this paper with the mild solution for the semilinear fractional differential equation of neutral type with infinite delay: <inline-formula><graphic file="1687-1847-2010-674630-i1.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-674630-i2.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-674630-i3.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-674630-i4.gif"/></inline-formula>, with <inline-formula><graphic file="1687-1847-2010-674630-i5.gif"/></inline-formula> and <inline-formula><graphic file="1687-1847-2010-674630-i6.gif"/></inline-formula>. We prove the existence (and uniqueness) of solutions, assuming that <inline-formula><graphic file="1687-1847-2010-674630-i7.gif"/></inline-formula> is a linear closed operator which generates an analytic semigroup <inline-formula><graphic file="1687-1847-2010-674630-i8.gif"/></inline-formula> on a Banach space <inline-formula><graphic file="1687-1847-2010-674630-i9.gif"/></inline-formula> by means of the Banach's fixed point theorem. This generalizes some recent results.</p> http://www.advancesindifferenceequations.com/content/2010/674630 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
N'Guérékata GastonM Mophou GisleM |
spellingShingle |
N'Guérékata GastonM Mophou GisleM A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay Advances in Difference Equations |
author_facet |
N'Guérékata GastonM Mophou GisleM |
author_sort |
N'Guérékata GastonM |
title |
A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay |
title_short |
A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay |
title_full |
A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay |
title_fullStr |
A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay |
title_full_unstemmed |
A Note on a Semilinear Fractional Differential Equation of Neutral Type with Infinite Delay |
title_sort |
note on a semilinear fractional differential equation of neutral type with infinite delay |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1839 1687-1847 |
publishDate |
2010-01-01 |
description |
<p/> <p>We deal in this paper with the mild solution for the semilinear fractional differential equation of neutral type with infinite delay: <inline-formula><graphic file="1687-1847-2010-674630-i1.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-674630-i2.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-674630-i3.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-674630-i4.gif"/></inline-formula>, with <inline-formula><graphic file="1687-1847-2010-674630-i5.gif"/></inline-formula> and <inline-formula><graphic file="1687-1847-2010-674630-i6.gif"/></inline-formula>. We prove the existence (and uniqueness) of solutions, assuming that <inline-formula><graphic file="1687-1847-2010-674630-i7.gif"/></inline-formula> is a linear closed operator which generates an analytic semigroup <inline-formula><graphic file="1687-1847-2010-674630-i8.gif"/></inline-formula> on a Banach space <inline-formula><graphic file="1687-1847-2010-674630-i9.gif"/></inline-formula> by means of the Banach's fixed point theorem. This generalizes some recent results.</p> |
url |
http://www.advancesindifferenceequations.com/content/2010/674630 |
work_keys_str_mv |
AT naposgu233r233katagastonm anoteonasemilinearfractionaldifferentialequationofneutraltypewithinfinitedelay AT mophougislem anoteonasemilinearfractionaldifferentialequationofneutraltypewithinfinitedelay AT naposgu233r233katagastonm noteonasemilinearfractionaldifferentialequationofneutraltypewithinfinitedelay AT mophougislem noteonasemilinearfractionaldifferentialequationofneutraltypewithinfinitedelay |
_version_ |
1716760268023791616 |