A Kotas-Style Characterisation of Minimal Discussive Logic
In this paper, we discuss a version of discussive logic determined by a certain variant of Jaśkowski’s original model of discussion. The obtained system can be treated as the minimal discussive logic. It is determined by frames with serial accessibility relation. As the smallest one, this...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-10-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/8/4/108 |
id |
doaj-c1c4a1619aa143998165f05dfe2e77bf |
---|---|
record_format |
Article |
spelling |
doaj-c1c4a1619aa143998165f05dfe2e77bf2020-11-25T02:27:40ZengMDPI AGAxioms2075-16802019-10-018410810.3390/axioms8040108axioms8040108A Kotas-Style Characterisation of Minimal Discussive LogicKrystyna Mruczek-Nasieniewska0Marek NasieniewskiDepartment of Logic, Nicolaus Copernicus University in Toruń, ul. Moniuszki 16/20, 87-100 Toruń, PolandIn this paper, we discuss a version of discussive logic determined by a certain variant of Jaśkowski’s original model of discussion. The obtained system can be treated as the minimal discussive logic. It is determined by frames with serial accessibility relation. As the smallest one, this logic can be treated as a basis which could be extended to richer discussive logics that are obtained by varying accessibility relation and resulting in a lattice of discussive logics. One has to remember that while formulating discussive logics there is no one-to-one determination of discussive logics by modal logics. For example, it is proved that Jaśkowski’s logic <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">2</mn> </msub> </semantics> </math> </inline-formula> can be expressed by other than <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mn>5</mn> </mrow> </semantics> </math> </inline-formula> modal logics. In this paper we consider a deductive system for the sketchily described minimal logic. While formulating the deductive system, we apply a method of Kotas that was used to axiomatize <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">2</mn> </msub> </semantics> </math> </inline-formula>. The obtained system determines a logic <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">0</mn> </msub> </semantics> </math> </inline-formula> as a set of theses that is contained in <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">2</mn> </msub> </semantics> </math> </inline-formula>. Moreover, any discussive logic that would be expressed by means of the provided model of discussion would contain <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">0</mn> </msub> </semantics> </math> </inline-formula>, so it is the smallest discussive logic.https://www.mdpi.com/2075-1680/8/4/108discussive logicsthe smallest discussive logicdiscussive operatorsserialityaccessibility relationkotas’ methodmodal logic |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Krystyna Mruczek-Nasieniewska Marek Nasieniewski |
spellingShingle |
Krystyna Mruczek-Nasieniewska Marek Nasieniewski A Kotas-Style Characterisation of Minimal Discussive Logic Axioms discussive logics the smallest discussive logic discussive operators seriality accessibility relation kotas’ method modal logic |
author_facet |
Krystyna Mruczek-Nasieniewska Marek Nasieniewski |
author_sort |
Krystyna Mruczek-Nasieniewska |
title |
A Kotas-Style Characterisation of Minimal Discussive Logic |
title_short |
A Kotas-Style Characterisation of Minimal Discussive Logic |
title_full |
A Kotas-Style Characterisation of Minimal Discussive Logic |
title_fullStr |
A Kotas-Style Characterisation of Minimal Discussive Logic |
title_full_unstemmed |
A Kotas-Style Characterisation of Minimal Discussive Logic |
title_sort |
kotas-style characterisation of minimal discussive logic |
publisher |
MDPI AG |
series |
Axioms |
issn |
2075-1680 |
publishDate |
2019-10-01 |
description |
In this paper, we discuss a version of discussive logic determined by a certain variant of Jaśkowski’s original model of discussion. The obtained system can be treated as the minimal discussive logic. It is determined by frames with serial accessibility relation. As the smallest one, this logic can be treated as a basis which could be extended to richer discussive logics that are obtained by varying accessibility relation and resulting in a lattice of discussive logics. One has to remember that while formulating discussive logics there is no one-to-one determination of discussive logics by modal logics. For example, it is proved that Jaśkowski’s logic <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">2</mn> </msub> </semantics> </math> </inline-formula> can be expressed by other than <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mn>5</mn> </mrow> </semantics> </math> </inline-formula> modal logics. In this paper we consider a deductive system for the sketchily described minimal logic. While formulating the deductive system, we apply a method of Kotas that was used to axiomatize <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">2</mn> </msub> </semantics> </math> </inline-formula>. The obtained system determines a logic <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">0</mn> </msub> </semantics> </math> </inline-formula> as a set of theses that is contained in <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">2</mn> </msub> </semantics> </math> </inline-formula>. Moreover, any discussive logic that would be expressed by means of the provided model of discussion would contain <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">0</mn> </msub> </semantics> </math> </inline-formula>, so it is the smallest discussive logic. |
topic |
discussive logics the smallest discussive logic discussive operators seriality accessibility relation kotas’ method modal logic |
url |
https://www.mdpi.com/2075-1680/8/4/108 |
work_keys_str_mv |
AT krystynamruczeknasieniewska akotasstylecharacterisationofminimaldiscussivelogic AT mareknasieniewski akotasstylecharacterisationofminimaldiscussivelogic AT krystynamruczeknasieniewska kotasstylecharacterisationofminimaldiscussivelogic AT mareknasieniewski kotasstylecharacterisationofminimaldiscussivelogic |
_version_ |
1724841625209798656 |