A Kotas-Style Characterisation of Minimal Discussive Logic

In this paper, we discuss a version of discussive logic determined by a certain variant of Jaśkowski’s original model of discussion. The obtained system can be treated as the minimal discussive logic. It is determined by frames with serial accessibility relation. As the smallest one, this...

Full description

Bibliographic Details
Main Authors: Krystyna Mruczek-Nasieniewska, Marek Nasieniewski
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/8/4/108
id doaj-c1c4a1619aa143998165f05dfe2e77bf
record_format Article
spelling doaj-c1c4a1619aa143998165f05dfe2e77bf2020-11-25T02:27:40ZengMDPI AGAxioms2075-16802019-10-018410810.3390/axioms8040108axioms8040108A Kotas-Style Characterisation of Minimal Discussive LogicKrystyna Mruczek-Nasieniewska0Marek NasieniewskiDepartment of Logic, Nicolaus Copernicus University in Toruń, ul. Moniuszki 16/20, 87-100 Toruń, PolandIn this paper, we discuss a version of discussive logic determined by a certain variant of Jaśkowski&#8217;s original model of discussion. The obtained system can be treated as the minimal discussive logic. It is determined by frames with serial accessibility relation. As the smallest one, this logic can be treated as a basis which could be extended to richer discussive logics that are obtained by varying accessibility relation and resulting in a lattice of discussive logics. One has to remember that while formulating discussive logics there is no one-to-one determination of discussive logics by modal logics. For example, it is proved that Jaśkowski&#8217;s logic <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">2</mn> </msub> </semantics> </math> </inline-formula> can be expressed by other than <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mn>5</mn> </mrow> </semantics> </math> </inline-formula> modal logics. In this paper we consider a deductive system for the sketchily described minimal logic. While formulating the deductive system, we apply a method of Kotas that was used to axiomatize <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">2</mn> </msub> </semantics> </math> </inline-formula>. The obtained system determines a logic <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">0</mn> </msub> </semantics> </math> </inline-formula> as a set of theses that is contained in <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">2</mn> </msub> </semantics> </math> </inline-formula>. Moreover, any discussive logic that would be expressed by means of the provided model of discussion would contain <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">0</mn> </msub> </semantics> </math> </inline-formula>, so it is the smallest discussive logic.https://www.mdpi.com/2075-1680/8/4/108discussive logicsthe smallest discussive logicdiscussive operatorsserialityaccessibility relationkotas’ methodmodal logic
collection DOAJ
language English
format Article
sources DOAJ
author Krystyna Mruczek-Nasieniewska
Marek Nasieniewski
spellingShingle Krystyna Mruczek-Nasieniewska
Marek Nasieniewski
A Kotas-Style Characterisation of Minimal Discussive Logic
Axioms
discussive logics
the smallest discussive logic
discussive operators
seriality
accessibility relation
kotas’ method
modal logic
author_facet Krystyna Mruczek-Nasieniewska
Marek Nasieniewski
author_sort Krystyna Mruczek-Nasieniewska
title A Kotas-Style Characterisation of Minimal Discussive Logic
title_short A Kotas-Style Characterisation of Minimal Discussive Logic
title_full A Kotas-Style Characterisation of Minimal Discussive Logic
title_fullStr A Kotas-Style Characterisation of Minimal Discussive Logic
title_full_unstemmed A Kotas-Style Characterisation of Minimal Discussive Logic
title_sort kotas-style characterisation of minimal discussive logic
publisher MDPI AG
series Axioms
issn 2075-1680
publishDate 2019-10-01
description In this paper, we discuss a version of discussive logic determined by a certain variant of Jaśkowski&#8217;s original model of discussion. The obtained system can be treated as the minimal discussive logic. It is determined by frames with serial accessibility relation. As the smallest one, this logic can be treated as a basis which could be extended to richer discussive logics that are obtained by varying accessibility relation and resulting in a lattice of discussive logics. One has to remember that while formulating discussive logics there is no one-to-one determination of discussive logics by modal logics. For example, it is proved that Jaśkowski&#8217;s logic <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">2</mn> </msub> </semantics> </math> </inline-formula> can be expressed by other than <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mn>5</mn> </mrow> </semantics> </math> </inline-formula> modal logics. In this paper we consider a deductive system for the sketchily described minimal logic. While formulating the deductive system, we apply a method of Kotas that was used to axiomatize <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">2</mn> </msub> </semantics> </math> </inline-formula>. The obtained system determines a logic <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">0</mn> </msub> </semantics> </math> </inline-formula> as a set of theses that is contained in <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">2</mn> </msub> </semantics> </math> </inline-formula>. Moreover, any discussive logic that would be expressed by means of the provided model of discussion would contain <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">D</mi> <mn mathvariant="sans-serif">0</mn> </msub> </semantics> </math> </inline-formula>, so it is the smallest discussive logic.
topic discussive logics
the smallest discussive logic
discussive operators
seriality
accessibility relation
kotas’ method
modal logic
url https://www.mdpi.com/2075-1680/8/4/108
work_keys_str_mv AT krystynamruczeknasieniewska akotasstylecharacterisationofminimaldiscussivelogic
AT mareknasieniewski akotasstylecharacterisationofminimaldiscussivelogic
AT krystynamruczeknasieniewska kotasstylecharacterisationofminimaldiscussivelogic
AT mareknasieniewski kotasstylecharacterisationofminimaldiscussivelogic
_version_ 1724841625209798656