Investigation on the Coupling Effects between Flow and Fibers on Fiber-Reinforced Plastic (FRP) Injection Parts
Glass or carbon fibers have been verified that can enhance the mechanical properties of the polymeric composite injection molding parts due to their orientation distribution. However, the interaction between flow and fiber is still not fully understood yet, especially for the flow–fiber coupling eff...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-10-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/12/10/2274 |
id |
doaj-c1bdcbe297b446d89029f8421e78de90 |
---|---|
record_format |
Article |
spelling |
doaj-c1bdcbe297b446d89029f8421e78de902020-11-25T03:55:47ZengMDPI AGPolymers2073-43602020-10-01122274227410.3390/polym12102274Investigation on the Coupling Effects between Flow and Fibers on Fiber-Reinforced Plastic (FRP) Injection PartsChao-Tsai Huang0Cheng-Hong Lai1Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, TaiwanDepartment of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, TaiwanGlass or carbon fibers have been verified that can enhance the mechanical properties of the polymeric composite injection molding parts due to their orientation distribution. However, the interaction between flow and fiber is still not fully understood yet, especially for the flow–fiber coupling effect. In this study, we have tried to investigate the flow–fiber coupling effect on fiber reinforced plastics (FRP) injection parts utilizing a more complicated geometry system with three ASTM D638 specimens. The study methods include both numerical simulation and experimental observation. Results showed that in the presence of flow–fiber coupling effect, the melt flow front advancement presents some variation, specifically the “convex-flat-flat” pattern will change to a “convex-flat-concave” pattern. Furthermore, through the fiber orientation distribution (FOD) study, the flow–fiber coupling effect is not significant at the near gate region (RG). It might result from the strong shear force to repress the appearance of the flow–fiber interaction. However, at the end of filling region (ER), the flow–fiber coupling effect tries to diminish the flow direction orientation tensor component A<sub>11</sub> and enhance the cross-flow orientation tensor component A<sub>22</sub> simultaneously. It results in the dominance in the cross-flow direction at the ER. This orientation distribution behavior variation has been verified using a micro-computerized tomography (micro-CT) scan and image analysis technology.https://www.mdpi.com/2073-4360/12/10/2274injection moldingfiber orientation distributionflow–fiber couplingfiber reinforced plastics (FRP) |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chao-Tsai Huang Cheng-Hong Lai |
spellingShingle |
Chao-Tsai Huang Cheng-Hong Lai Investigation on the Coupling Effects between Flow and Fibers on Fiber-Reinforced Plastic (FRP) Injection Parts Polymers injection molding fiber orientation distribution flow–fiber coupling fiber reinforced plastics (FRP) |
author_facet |
Chao-Tsai Huang Cheng-Hong Lai |
author_sort |
Chao-Tsai Huang |
title |
Investigation on the Coupling Effects between Flow and Fibers on Fiber-Reinforced Plastic (FRP) Injection Parts |
title_short |
Investigation on the Coupling Effects between Flow and Fibers on Fiber-Reinforced Plastic (FRP) Injection Parts |
title_full |
Investigation on the Coupling Effects between Flow and Fibers on Fiber-Reinforced Plastic (FRP) Injection Parts |
title_fullStr |
Investigation on the Coupling Effects between Flow and Fibers on Fiber-Reinforced Plastic (FRP) Injection Parts |
title_full_unstemmed |
Investigation on the Coupling Effects between Flow and Fibers on Fiber-Reinforced Plastic (FRP) Injection Parts |
title_sort |
investigation on the coupling effects between flow and fibers on fiber-reinforced plastic (frp) injection parts |
publisher |
MDPI AG |
series |
Polymers |
issn |
2073-4360 |
publishDate |
2020-10-01 |
description |
Glass or carbon fibers have been verified that can enhance the mechanical properties of the polymeric composite injection molding parts due to their orientation distribution. However, the interaction between flow and fiber is still not fully understood yet, especially for the flow–fiber coupling effect. In this study, we have tried to investigate the flow–fiber coupling effect on fiber reinforced plastics (FRP) injection parts utilizing a more complicated geometry system with three ASTM D638 specimens. The study methods include both numerical simulation and experimental observation. Results showed that in the presence of flow–fiber coupling effect, the melt flow front advancement presents some variation, specifically the “convex-flat-flat” pattern will change to a “convex-flat-concave” pattern. Furthermore, through the fiber orientation distribution (FOD) study, the flow–fiber coupling effect is not significant at the near gate region (RG). It might result from the strong shear force to repress the appearance of the flow–fiber interaction. However, at the end of filling region (ER), the flow–fiber coupling effect tries to diminish the flow direction orientation tensor component A<sub>11</sub> and enhance the cross-flow orientation tensor component A<sub>22</sub> simultaneously. It results in the dominance in the cross-flow direction at the ER. This orientation distribution behavior variation has been verified using a micro-computerized tomography (micro-CT) scan and image analysis technology. |
topic |
injection molding fiber orientation distribution flow–fiber coupling fiber reinforced plastics (FRP) |
url |
https://www.mdpi.com/2073-4360/12/10/2274 |
work_keys_str_mv |
AT chaotsaihuang investigationonthecouplingeffectsbetweenflowandfibersonfiberreinforcedplasticfrpinjectionparts AT chenghonglai investigationonthecouplingeffectsbetweenflowandfibersonfiberreinforcedplasticfrpinjectionparts |
_version_ |
1724468141120028672 |