Anode interfacial layer formation via reductive ethyl detaching of organic iodide in lithium–oxygen batteries
To fulfill the great promise of Li-O2 batteries, the high charge overpotential is a major challenge that has to be addressed. Here the authors introduce triethylsulfonium iodide as a redox mediator as well as an enabler of a protective layer on Li anode, leading to notable electrochemical performanc...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2019-08-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-019-11544-8 |
Summary: | To fulfill the great promise of Li-O2 batteries, the high charge overpotential is a major challenge that has to be addressed. Here the authors introduce triethylsulfonium iodide as a redox mediator as well as an enabler of a protective layer on Li anode, leading to notable electrochemical performance. |
---|---|
ISSN: | 2041-1723 |