Analysis of Stage–Discharge Relationship Stability Based on Historical Ratings

We explored the stability of the rating curves at six streamflow gauging sites in the state of Iowa, USA, to examine temporal variability of their stage–discharge relationships. The analyzed sites have up to 10 years of rating and shift records. Rating curve shifts reflect the alteration of channel...

Full description

Bibliographic Details
Main Authors: Marcela Rojas, Felipe Quintero, Nathan Young
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Hydrology
Subjects:
Online Access:https://www.mdpi.com/2306-5338/7/2/31
Description
Summary:We explored the stability of the rating curves at six streamflow gauging sites in the state of Iowa, USA, to examine temporal variability of their stage–discharge relationships. The analyzed sites have up to 10 years of rating and shift records. Rating curve shifts reflect the alteration of channel geometry caused by scouring and sediment deposition. We studied how rating shifts are connected to the occurrence of flood events and drought periods over time. We found that most rating curve changes take place during spring and summer, which are the seasons with more precipitation in Iowa. We quantified stability in terms of standard deviation of stages for a continuous range of discharges in a rating curve, and show that most of the sites exhibit greater standard stage deviation for discharge–flood ratios smaller than 1, while for larger discharge–flood ratios, the deviation decreases. In stable rating curves, the stage deviation tends to decrease as discharge increases. Non-stable rating curves exhibit large stage deviation in the stage–discharge relationship throughout all stages.
ISSN:2306-5338