Aproximate algorithms for nonlinear filtering of chaos algoritmos de aproximación para filtrado no lineal de caos
The paper is dedicated to the description of two approximate methods of non-linear filtering algorithms for signals of Lorenz, hua and Rössler attractors to provide real time filtering solutions for scenarios with low Signal Noise Ratios (SNR). For those cases he method of the Global (Integral) Appr...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidad Distrital Francisco José de Caldas
2009-11-01
|
Series: | Visión Electrónica |
Subjects: | |
Online Access: | http://revistas.udistrital.edu.co/ojs/index.php/visele/article/view/2830/4117 |
id |
doaj-c1711308aba84d8b9b5d1e377baa218c |
---|---|
record_format |
Article |
spelling |
doaj-c1711308aba84d8b9b5d1e377baa218c2020-11-25T03:41:40ZengUniversidad Distrital Francisco José de CaldasVisión Electrónica1909-97462248-47282009-11-0132511Aproximate algorithms for nonlinear filtering of chaos algoritmos de aproximación para filtrado no lineal de caosValeri KontorovichZinaida LovtchikovaThe paper is dedicated to the description of two approximate methods of non-linear filtering algorithms for signals of Lorenz, hua and Rössler attractors to provide real time filtering solutions for scenarios with low Signal Noise Ratios (SNR). For those cases he method of the Global (Integral) Approximation of the a-posteriori Probability Density Function (PDF) is considered. Some asymptotical solutions are presented as well.http://revistas.udistrital.edu.co/ojs/index.php/visele/article/view/2830/4117Nonlinear filteringGlobal ApproximationProbability Density FunctionAttractorsconditionsAsymptotical solutions. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Valeri Kontorovich Zinaida Lovtchikova |
spellingShingle |
Valeri Kontorovich Zinaida Lovtchikova Aproximate algorithms for nonlinear filtering of chaos algoritmos de aproximación para filtrado no lineal de caos Visión Electrónica Nonlinear filtering Global Approximation Probability Density Function Attractors conditions Asymptotical solutions. |
author_facet |
Valeri Kontorovich Zinaida Lovtchikova |
author_sort |
Valeri Kontorovich |
title |
Aproximate algorithms for nonlinear filtering of chaos algoritmos de aproximación para filtrado no lineal de caos |
title_short |
Aproximate algorithms for nonlinear filtering of chaos algoritmos de aproximación para filtrado no lineal de caos |
title_full |
Aproximate algorithms for nonlinear filtering of chaos algoritmos de aproximación para filtrado no lineal de caos |
title_fullStr |
Aproximate algorithms for nonlinear filtering of chaos algoritmos de aproximación para filtrado no lineal de caos |
title_full_unstemmed |
Aproximate algorithms for nonlinear filtering of chaos algoritmos de aproximación para filtrado no lineal de caos |
title_sort |
aproximate algorithms for nonlinear filtering of chaos algoritmos de aproximación para filtrado no lineal de caos |
publisher |
Universidad Distrital Francisco José de Caldas |
series |
Visión Electrónica |
issn |
1909-9746 2248-4728 |
publishDate |
2009-11-01 |
description |
The paper is dedicated to the description of two approximate methods of non-linear filtering algorithms for signals of Lorenz, hua and Rössler attractors to provide real time filtering solutions for scenarios with low Signal Noise Ratios (SNR). For those cases he method of the Global (Integral) Approximation of the a-posteriori Probability Density Function (PDF) is considered. Some asymptotical solutions are presented as well. |
topic |
Nonlinear filtering Global Approximation Probability Density Function Attractors conditions Asymptotical solutions. |
url |
http://revistas.udistrital.edu.co/ojs/index.php/visele/article/view/2830/4117 |
work_keys_str_mv |
AT valerikontorovich aproximatealgorithmsfornonlinearfilteringofchaosalgoritmosdeaproximacionparafiltradonolinealdecaos AT zinaidalovtchikova aproximatealgorithmsfornonlinearfilteringofchaosalgoritmosdeaproximacionparafiltradonolinealdecaos |
_version_ |
1724529018248626176 |