Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells
Sangiliyandi Gurunathan,1 Jegadeesh Raman,2 Sri Nurestri Abd Malek,2 Priscilla A John,2 Sabaratnam Vikineswary2 1Department of Animal Biotechnology, Konkuk University, Seoul, South Korea; 2Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia Background: Silver nanoparticles (AgNPs)...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Dove Medical Press
2013-11-01
|
Series: | International Journal of Nanomedicine |
Online Access: | http://www.dovepress.com/green-synthesis-of-silver-nanoparticles-using-ganoderma-neo-japonicum--a14996 |
id |
doaj-c15addc9d3c941abb2be3373867e3aa4 |
---|---|
record_format |
Article |
spelling |
doaj-c15addc9d3c941abb2be3373867e3aa42020-11-24T23:50:20ZengDove Medical PressInternational Journal of Nanomedicine1176-91141178-20132013-11-012013Issue 143994413Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cellsGurunathan SRaman JMalek SNJohn PAVikineswary SSangiliyandi Gurunathan,1 Jegadeesh Raman,2 Sri Nurestri Abd Malek,2 Priscilla A John,2 Sabaratnam Vikineswary2 1Department of Animal Biotechnology, Konkuk University, Seoul, South Korea; 2Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia Background: Silver nanoparticles (AgNPs) are an important class of nanomaterial for a wide range of industrial and biomedical applications. AgNPs have been used as antimicrobial and disinfectant agents due their detrimental effect on target cells. The aim of our study was to determine the cytotoxic effects of biologically synthesized AgNPs using hot aqueous extracts of the mycelia of Ganoderma neo-japonicum Imazeki on MDA-MB-231 human breast cancer cells. Methods: We developed a green method for the synthesis of water-soluble AgNPs by treating silver ions with hot aqueous extract of the mycelia of G. neo-japonicum. The formation of AgNPs was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. Furthermore, the toxicity of synthesized AgNPs was evaluated using a series of assays: such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase 3, DNA laddering, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling in human breast cancer cells (MDA-MB-231). Results: The ultraviolet-visible absorption spectroscopy results showed a strong resonance centered on the surface of AgNPs at 420 nm. The X-ray diffraction analysis confirmed that the synthesized AgNPs were single-crystalline, corresponding with the result of transmission electron microscopy. Treatment of MDA-MB-231 breast cancer cells with various concentrations of AgNPs (1–10 µg/mL) for 24 hours revealed that AgNPs could inhibit cell viability and induce membrane leakage in a dose-dependent manner. Cells exposed to AgNPs showed increased reactive oxygen species and hydroxyl radical production. Furthermore, the apoptotic effects of AgNPs were confirmed by activation of caspase 3 and DNA nuclear fragmentation. Conclusion: The results indicate that AgNPs possess cytotoxic effects with apoptotic features and suggest that the reactive oxygen species generated by AgNPs have a significant role in apoptosis. The present findings suggest that AgNPs could contribute to the development of a suitable anticancer drug, which may lead to the development of a novel nanomedicine for the treatment of cancers. Keywords: AgNPs, Ganoderma neo-japonicum, human breast cancer cells, cytotoxicity, caspase-3 activity, DNA fragmentationhttp://www.dovepress.com/green-synthesis-of-silver-nanoparticles-using-ganoderma-neo-japonicum--a14996 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gurunathan S Raman J Malek SN John PA Vikineswary S |
spellingShingle |
Gurunathan S Raman J Malek SN John PA Vikineswary S Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells International Journal of Nanomedicine |
author_facet |
Gurunathan S Raman J Malek SN John PA Vikineswary S |
author_sort |
Gurunathan S |
title |
Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells |
title_short |
Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells |
title_full |
Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells |
title_fullStr |
Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells |
title_full_unstemmed |
Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells |
title_sort |
green synthesis of silver nanoparticles using ganoderma neo-japonicum imazeki: a potential cytotoxic agent against breast cancer cells |
publisher |
Dove Medical Press |
series |
International Journal of Nanomedicine |
issn |
1176-9114 1178-2013 |
publishDate |
2013-11-01 |
description |
Sangiliyandi Gurunathan,1 Jegadeesh Raman,2 Sri Nurestri Abd Malek,2 Priscilla A John,2 Sabaratnam Vikineswary2 1Department of Animal Biotechnology, Konkuk University, Seoul, South Korea; 2Mushroom Research Centre, University of Malaya, Kuala Lumpur, Malaysia Background: Silver nanoparticles (AgNPs) are an important class of nanomaterial for a wide range of industrial and biomedical applications. AgNPs have been used as antimicrobial and disinfectant agents due their detrimental effect on target cells. The aim of our study was to determine the cytotoxic effects of biologically synthesized AgNPs using hot aqueous extracts of the mycelia of Ganoderma neo-japonicum Imazeki on MDA-MB-231 human breast cancer cells. Methods: We developed a green method for the synthesis of water-soluble AgNPs by treating silver ions with hot aqueous extract of the mycelia of G. neo-japonicum. The formation of AgNPs was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. Furthermore, the toxicity of synthesized AgNPs was evaluated using a series of assays: such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase 3, DNA laddering, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling in human breast cancer cells (MDA-MB-231). Results: The ultraviolet-visible absorption spectroscopy results showed a strong resonance centered on the surface of AgNPs at 420 nm. The X-ray diffraction analysis confirmed that the synthesized AgNPs were single-crystalline, corresponding with the result of transmission electron microscopy. Treatment of MDA-MB-231 breast cancer cells with various concentrations of AgNPs (1–10 µg/mL) for 24 hours revealed that AgNPs could inhibit cell viability and induce membrane leakage in a dose-dependent manner. Cells exposed to AgNPs showed increased reactive oxygen species and hydroxyl radical production. Furthermore, the apoptotic effects of AgNPs were confirmed by activation of caspase 3 and DNA nuclear fragmentation. Conclusion: The results indicate that AgNPs possess cytotoxic effects with apoptotic features and suggest that the reactive oxygen species generated by AgNPs have a significant role in apoptosis. The present findings suggest that AgNPs could contribute to the development of a suitable anticancer drug, which may lead to the development of a novel nanomedicine for the treatment of cancers. Keywords: AgNPs, Ganoderma neo-japonicum, human breast cancer cells, cytotoxicity, caspase-3 activity, DNA fragmentation |
url |
http://www.dovepress.com/green-synthesis-of-silver-nanoparticles-using-ganoderma-neo-japonicum--a14996 |
work_keys_str_mv |
AT gurunathans greensynthesisofsilvernanoparticlesusingganodermaneojaponicumimazekiapotentialcytotoxicagentagainstbreastcancercells AT ramanj greensynthesisofsilvernanoparticlesusingganodermaneojaponicumimazekiapotentialcytotoxicagentagainstbreastcancercells AT maleksn greensynthesisofsilvernanoparticlesusingganodermaneojaponicumimazekiapotentialcytotoxicagentagainstbreastcancercells AT johnpa greensynthesisofsilvernanoparticlesusingganodermaneojaponicumimazekiapotentialcytotoxicagentagainstbreastcancercells AT vikineswarys greensynthesisofsilvernanoparticlesusingganodermaneojaponicumimazekiapotentialcytotoxicagentagainstbreastcancercells |
_version_ |
1725479132316303360 |