Quantitative analysis of the effects of morphological changes on extracellular electron transfer rates in cyanobacteria
Abstract Background Understanding the extracellular electron transport pathways in cyanobacteria is a major factor towards developing biophotovoltaics. Stressing cyanobacteria cells environmentally and then probing changes in physiology or metabolism following a significant change in electron transf...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2020-08-01
|
Series: | Biotechnology for Biofuels |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13068-020-01788-8 |
id |
doaj-c14d1d123b75409592ef69f814930422 |
---|---|
record_format |
Article |
spelling |
doaj-c14d1d123b75409592ef69f8149304222020-11-25T03:54:23ZengBMCBiotechnology for Biofuels1754-68342020-08-0113111410.1186/s13068-020-01788-8Quantitative analysis of the effects of morphological changes on extracellular electron transfer rates in cyanobacteriaTonny I. Okedi0Adrian C. Fisher1Kamran Yunus2Department of Chemical Engineering and Biotechnology, University of CambridgeDepartment of Chemical Engineering and Biotechnology, University of CambridgeDepartment of Chemical Engineering and Biotechnology, University of CambridgeAbstract Background Understanding the extracellular electron transport pathways in cyanobacteria is a major factor towards developing biophotovoltaics. Stressing cyanobacteria cells environmentally and then probing changes in physiology or metabolism following a significant change in electron transfer rates is a common approach for investigating the electron path from cell to electrode. However, such studies have not explored how the cells’ concurrent morphological adaptations to the applied stresses affect electron transfer rates. In this paper, we establish a ratio to quantify this effect in mediated systems and apply it to Synechococcus elongatus sp. PCC7942 cells grown under different nutritional regimes. Results The results provide evidence that wider and longer cells with larger surface areas have faster mediated electron transfer rates. For rod-shaped cells, increase in cell area as a result of cell elongation more than compensates for the associated decline in mass transfer coefficients, resulting in faster electron transfer. In addition, the results demonstrate that the extent to which morphological adaptations account for the changes in electron transfer rates changes over the bacterial growth cycle, such that investigations probing physiological and metabolic changes are meaningful only at certain time periods. Conclusion A simple ratio for quantitatively evaluating the effects of cell morphology adaptations on electron transfer rates has been defined. Furthermore, the study points to engineering cell shape, either via environmental conditioning or genetic engineering, as a potential strategy for improving the performance of biophotovoltaic devices.http://link.springer.com/article/10.1186/s13068-020-01788-8MorphologyExtracellular electron transferCyanobacteriaSynechococcus elongatus sp. PCC7942Mass transfer |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tonny I. Okedi Adrian C. Fisher Kamran Yunus |
spellingShingle |
Tonny I. Okedi Adrian C. Fisher Kamran Yunus Quantitative analysis of the effects of morphological changes on extracellular electron transfer rates in cyanobacteria Biotechnology for Biofuels Morphology Extracellular electron transfer Cyanobacteria Synechococcus elongatus sp. PCC7942 Mass transfer |
author_facet |
Tonny I. Okedi Adrian C. Fisher Kamran Yunus |
author_sort |
Tonny I. Okedi |
title |
Quantitative analysis of the effects of morphological changes on extracellular electron transfer rates in cyanobacteria |
title_short |
Quantitative analysis of the effects of morphological changes on extracellular electron transfer rates in cyanobacteria |
title_full |
Quantitative analysis of the effects of morphological changes on extracellular electron transfer rates in cyanobacteria |
title_fullStr |
Quantitative analysis of the effects of morphological changes on extracellular electron transfer rates in cyanobacteria |
title_full_unstemmed |
Quantitative analysis of the effects of morphological changes on extracellular electron transfer rates in cyanobacteria |
title_sort |
quantitative analysis of the effects of morphological changes on extracellular electron transfer rates in cyanobacteria |
publisher |
BMC |
series |
Biotechnology for Biofuels |
issn |
1754-6834 |
publishDate |
2020-08-01 |
description |
Abstract Background Understanding the extracellular electron transport pathways in cyanobacteria is a major factor towards developing biophotovoltaics. Stressing cyanobacteria cells environmentally and then probing changes in physiology or metabolism following a significant change in electron transfer rates is a common approach for investigating the electron path from cell to electrode. However, such studies have not explored how the cells’ concurrent morphological adaptations to the applied stresses affect electron transfer rates. In this paper, we establish a ratio to quantify this effect in mediated systems and apply it to Synechococcus elongatus sp. PCC7942 cells grown under different nutritional regimes. Results The results provide evidence that wider and longer cells with larger surface areas have faster mediated electron transfer rates. For rod-shaped cells, increase in cell area as a result of cell elongation more than compensates for the associated decline in mass transfer coefficients, resulting in faster electron transfer. In addition, the results demonstrate that the extent to which morphological adaptations account for the changes in electron transfer rates changes over the bacterial growth cycle, such that investigations probing physiological and metabolic changes are meaningful only at certain time periods. Conclusion A simple ratio for quantitatively evaluating the effects of cell morphology adaptations on electron transfer rates has been defined. Furthermore, the study points to engineering cell shape, either via environmental conditioning or genetic engineering, as a potential strategy for improving the performance of biophotovoltaic devices. |
topic |
Morphology Extracellular electron transfer Cyanobacteria Synechococcus elongatus sp. PCC7942 Mass transfer |
url |
http://link.springer.com/article/10.1186/s13068-020-01788-8 |
work_keys_str_mv |
AT tonnyiokedi quantitativeanalysisoftheeffectsofmorphologicalchangesonextracellularelectrontransferratesincyanobacteria AT adriancfisher quantitativeanalysisoftheeffectsofmorphologicalchangesonextracellularelectrontransferratesincyanobacteria AT kamranyunus quantitativeanalysisoftheeffectsofmorphologicalchangesonextracellularelectrontransferratesincyanobacteria |
_version_ |
1724473997259702272 |