Self-similar solutions of convection-diffusion processes
Geometric properties of self-similar solutions to the equation $ u_t = u_{xx} + \gamma(u^q)_x,\ x > 0,\ t > 0 $ are studied, $ q $ is positive and $ \gamma\in \mathbb{R}\setminus\{0\}$. Two critical values of $ q $ (namely 1 and 2) appear the corresponding shapes are of very different nat...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2000-01-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=20 |
id |
doaj-c1316e6ca16a4400935278353cc590e7 |
---|---|
record_format |
Article |
spelling |
doaj-c1316e6ca16a4400935278353cc590e72021-07-14T07:21:17ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752000-01-012000311810.14232/ejqtde.2000.1.320Self-similar solutions of convection-diffusion processesMohammed Guedda0Université de Picardie Jules Verne, Amiens, FranceGeometric properties of self-similar solutions to the equation $ u_t = u_{xx} + \gamma(u^q)_x,\ x > 0,\ t > 0 $ are studied, $ q $ is positive and $ \gamma\in \mathbb{R}\setminus\{0\}$. Two critical values of $ q $ (namely 1 and 2) appear the corresponding shapes are of very different nature.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=20 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mohammed Guedda |
spellingShingle |
Mohammed Guedda Self-similar solutions of convection-diffusion processes Electronic Journal of Qualitative Theory of Differential Equations |
author_facet |
Mohammed Guedda |
author_sort |
Mohammed Guedda |
title |
Self-similar solutions of convection-diffusion processes |
title_short |
Self-similar solutions of convection-diffusion processes |
title_full |
Self-similar solutions of convection-diffusion processes |
title_fullStr |
Self-similar solutions of convection-diffusion processes |
title_full_unstemmed |
Self-similar solutions of convection-diffusion processes |
title_sort |
self-similar solutions of convection-diffusion processes |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2000-01-01 |
description |
Geometric properties of self-similar solutions to the equation $ u_t = u_{xx} + \gamma(u^q)_x,\ x > 0,\ t > 0 $ are studied, $ q $ is positive and $ \gamma\in \mathbb{R}\setminus\{0\}$. Two critical values of $ q $ (namely 1 and 2) appear the corresponding shapes are of very different nature. |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=20 |
work_keys_str_mv |
AT mohammedguedda selfsimilarsolutionsofconvectiondiffusionprocesses |
_version_ |
1721303970860761088 |