Optical Performance of Top-Down Fabricated AlGaN Nanorod Arrays with Multi-Quantum Wells Embedded

Abstract Deep ultraviolet AlGaN-based nanorod (NR) arrays were fabricated by nanoimprint lithography and top-down dry etching techniques from a fully structural LED wafer. Highly ordered periodic structural properties and morphology were confirmed by scanning electron microscopy and transmission ele...

Full description

Bibliographic Details
Main Authors: Shucheng Ge, Jiangping Dai, Na Gao, Shiqiang Lu, Penggang Li, Kai Huang, Bin Liu, Junyong Kang, Rong Zhang, Youdou Zheng
Format: Article
Language:English
Published: SpringerOpen 2019-05-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11671-019-3003-1
Description
Summary:Abstract Deep ultraviolet AlGaN-based nanorod (NR) arrays were fabricated by nanoimprint lithography and top-down dry etching techniques from a fully structural LED wafer. Highly ordered periodic structural properties and morphology were confirmed by scanning electron microscopy and transmission electron microscopy. Compared with planar samples, cathodoluminescence measurement revealed that NR samples showed 1.92-fold light extraction efficiency (LEE) enhancement and a 12.2-fold internal quantum efficiency (IQE) enhancement for the emission from multi-quantum wells at approximately 277 nm. The LEE enhancement can be attributed to the well-fabricated nanostructured interface between the air and the epilayers. Moreover, the reduced quantum-confined stark effect accounted for the great enhancement in IQE.
ISSN:1931-7573
1556-276X