POPS: A Software for Prediction of Population Genetic Structure Using Latent Regression Models

The software POPS performs inference of population genetic structure using multilocus genotypic data. Based on a hierarchical Bayesian framework for latent regression models, POPS implements algorithms that improve estimation of individual admixture proportions and cluster membership probabilities b...

Full description

Bibliographic Details
Main Authors: Flora Jay, Olivier François, Eric Y. Durand, Michael G. B. Blum
Format: Article
Language:English
Published: Foundation for Open Access Statistics 2015-12-01
Series:Journal of Statistical Software
Subjects:
Online Access:https://www.jstatsoft.org/index.php/jss/article/view/2490
id doaj-c1039092f3e44d27bcb136dfc9a05278
record_format Article
spelling doaj-c1039092f3e44d27bcb136dfc9a052782020-11-25T00:21:40ZengFoundation for Open Access StatisticsJournal of Statistical Software1548-76602015-12-0168111910.18637/jss.v068.i09967POPS: A Software for Prediction of Population Genetic Structure Using Latent Regression ModelsFlora JayOlivier FrançoisEric Y. DurandMichael G. B. BlumThe software POPS performs inference of population genetic structure using multilocus genotypic data. Based on a hierarchical Bayesian framework for latent regression models, POPS implements algorithms that improve estimation of individual admixture proportions and cluster membership probabilities by using geographic and environmental information. In addition, POPS defines ancestry distribution models allowing its users to forecast admixture proportion and cluster membership geographic variation under changing environmental conditions. We illustrate a typical use of POPS using data for an alpine plant species, for which POPS predicts changes in spatial population structure assuming a particular scenario of climate change.https://www.jstatsoft.org/index.php/jss/article/view/2490latent class regression modelsmixture modelsMCMCpopulation genetic structureenvironmental covariates
collection DOAJ
language English
format Article
sources DOAJ
author Flora Jay
Olivier François
Eric Y. Durand
Michael G. B. Blum
spellingShingle Flora Jay
Olivier François
Eric Y. Durand
Michael G. B. Blum
POPS: A Software for Prediction of Population Genetic Structure Using Latent Regression Models
Journal of Statistical Software
latent class regression models
mixture models
MCMC
population genetic structure
environmental covariates
author_facet Flora Jay
Olivier François
Eric Y. Durand
Michael G. B. Blum
author_sort Flora Jay
title POPS: A Software for Prediction of Population Genetic Structure Using Latent Regression Models
title_short POPS: A Software for Prediction of Population Genetic Structure Using Latent Regression Models
title_full POPS: A Software for Prediction of Population Genetic Structure Using Latent Regression Models
title_fullStr POPS: A Software for Prediction of Population Genetic Structure Using Latent Regression Models
title_full_unstemmed POPS: A Software for Prediction of Population Genetic Structure Using Latent Regression Models
title_sort pops: a software for prediction of population genetic structure using latent regression models
publisher Foundation for Open Access Statistics
series Journal of Statistical Software
issn 1548-7660
publishDate 2015-12-01
description The software POPS performs inference of population genetic structure using multilocus genotypic data. Based on a hierarchical Bayesian framework for latent regression models, POPS implements algorithms that improve estimation of individual admixture proportions and cluster membership probabilities by using geographic and environmental information. In addition, POPS defines ancestry distribution models allowing its users to forecast admixture proportion and cluster membership geographic variation under changing environmental conditions. We illustrate a typical use of POPS using data for an alpine plant species, for which POPS predicts changes in spatial population structure assuming a particular scenario of climate change.
topic latent class regression models
mixture models
MCMC
population genetic structure
environmental covariates
url https://www.jstatsoft.org/index.php/jss/article/view/2490
work_keys_str_mv AT florajay popsasoftwareforpredictionofpopulationgeneticstructureusinglatentregressionmodels
AT olivierfrancois popsasoftwareforpredictionofpopulationgeneticstructureusinglatentregressionmodels
AT ericydurand popsasoftwareforpredictionofpopulationgeneticstructureusinglatentregressionmodels
AT michaelgbblum popsasoftwareforpredictionofpopulationgeneticstructureusinglatentregressionmodels
_version_ 1725361622545858560