Adaptive fitting algorithm of progressive interpolation for Loop subdivision surface

Subdivision surface and data fitting have been applied in data compression and data fusion a lot recently. Moreover, subdivision schemes have been successfully combined into multi-resolution analysis and wavelet analysis. This makes subdivision surfaces attract more and more attentions in the field...

Full description

Bibliographic Details
Main Authors: Li Zhang, Xiangrong She, Xianyu Ge, Jieqing Tan
Format: Article
Language:English
Published: SAGE Publishing 2018-11-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1177/1550147718812355
Description
Summary:Subdivision surface and data fitting have been applied in data compression and data fusion a lot recently. Moreover, subdivision schemes have been successfully combined into multi-resolution analysis and wavelet analysis. This makes subdivision surfaces attract more and more attentions in the field of geometry compression. Progressive interpolation subdivision surfaces generated by approximating schemes were presented recently. When the number of original vertices becomes huge, the convergence speed becomes slow and computation complexity becomes huge. In order to solve these problems, an adaptive progressive interpolation subdivision scheme is presented in this article. The vertices of control mesh are classified into two classes: active vertices and fixed ones. When precision is given, the two classes of vertices are changed dynamically according to the result of each iteration. Only the active vertices are adjusted, thus the class of active vertices keeps running down while the fixed ones keep rising, which saves computation greatly. Furthermore, weights are assigned to these vertices to accelerate convergence speed. Theoretical analysis and numerical examples are also given to illustrate the correctness and effectiveness of the method.
ISSN:1550-1477