Extract of Allium tuberosum Rottler ex Spreng Promoted the Hair Growth through Regulating the Expression of IGF-1

Allium tuberosum Rottler ex Spreng (ATRES) has been used as a traditional medicine for the treatment of abdominal pain, diarrhea, and asthma. In this study, we investigated the hair growth promoting activities of ATRES on telogenic C57BL6/N mice. Hair growth was significantly increased in the dorsal...

Full description

Bibliographic Details
Main Authors: Ki Moon Park, Dong Woo Kim, Seung Ho Lee
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Evidence-Based Complementary and Alternative Medicine
Online Access:http://dx.doi.org/10.1155/2015/413538
Description
Summary:Allium tuberosum Rottler ex Spreng (ATRES) has been used as a traditional medicine for the treatment of abdominal pain, diarrhea, and asthma. In this study, we investigated the hair growth promoting activities of ATRES on telogenic C57BL6/N mice. Hair growth was significantly increased in the dorsal skin of ethanol extract of ATRES treated mouse group compared with the control mouse group. To enrich the hair promoting activity, an ethanol-insoluble fraction was further extracted in sequence with n-hexane, dichloromethane, ethyl acetate, n-butanol, and distilled water. Interestingly, we found that extraction with n-butanol is most efficient in producing the hair promoting activity. In addition, the soluble fraction of the n-butanol extract was further separated by silica gel chromatography and thin layer chromatography (TLC) resulting in isolating four single fractions which have hair growth regeneration potential. Furthermore, administration of ATRES extracts to dorsal skin area increased the number of hair follicles compared with control mouse group. Interestingly, administration of ATRES extract stimulated the expression of insulin-like growth factor-1 (IGF-1) but not of keratin growth factor (KGF) or vascular endothelial growth factor (VEGF). Taken together, these results suggest that ATRES possesses strong hair growth promoting potential which controls the expression of IGF-1.
ISSN:1741-427X
1741-4288