Summary: | Face recognition technology is presenting exciting opportunities, but its performance gets degraded because of several factors, like pose variation, partial occlusion, expression, illumination, biased data, etc. This paper proposes a novel bird search-based shuffled shepherd optimization algorithm (BSSSO), a meta-heuristic technique motivated by the intuition of animals and the social behavior of birds, for improving the performance of face recognition. The main intention behind the research is to establish an optimization-driven deep learning approach for recognizing face images with multiple disturbing environments. The developed model undergoes three main steps, namely, (a) Noise Removal, (b) Feature Extraction, and (c) Recognition. For the removal of noise, a type II fuzzy system and cuckoo search optimization algorithm (T2FCS) is used. The feature extraction is carried out using the CNN, and landmark enabled 3D morphable model (L3DMM) is utilized to efficiently fit a 3D face from a single uncontrolled image. The obtained features are subjected to Deep CNN for face recognition, wherein the training is performed using novel BSSSO. The experimental findings on standard datasets (LFW, UMB-DB, Extended Yale B database) prove the ability of the proposed model over the existing face recognition approaches.
|