The Fractional Preferential Attachment Scale-Free Network Model

Many networks generated by nature have two generic properties: they are formed in the process of preferential attachment and they are scale-free. Considering these features, by interfering with mechanism of the preferential attachment, we propose a generalisation of the Barabási–Albert model—the ’Fr...

Full description

Bibliographic Details
Main Authors: Rafał Rak, Ewa Rak
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/5/509
Description
Summary:Many networks generated by nature have two generic properties: they are formed in the process of preferential attachment and they are scale-free. Considering these features, by interfering with mechanism of the preferential attachment, we propose a generalisation of the Barabási–Albert model—the ’Fractional Preferential Attachment’ (FPA) scale-free network model—that generates networks with time-independent degree distributions <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>∼</mo> <msup> <mi>k</mi> <mrow> <mo>−</mo> <mi>γ</mi> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> with degree exponent <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mo><</mo> <mi>γ</mi> <mo>≤</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> (where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> corresponds to the typical value of the BA model). In the FPA model, the element controlling the network properties is the <i>f</i> parameter, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>〉</mo> </mrow> </semantics> </math> </inline-formula>. Depending on the different values of <i>f</i> parameter, we study the statistical properties of the numerically generated networks. We investigate the topological properties of FPA networks such as degree distribution, degree correlation (network assortativity), clustering coefficient, average node degree, network diameter, average shortest path length and features of fractality. We compare the obtained values with the results for various synthetic and real-world networks. It is found that, depending on <i>f</i>, the FPA model generates networks with parameters similar to the real-world networks. Furthermore, it is shown that <i>f</i> parameter has a significant impact on, among others, degree distribution and degree correlation of generated networks. Therefore, the FPA scale-free network model can be an interesting alternative to existing network models. In addition, it turns out that, regardless of the value of <i>f</i>, FPA networks are not fractal.
ISSN:1099-4300