Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis
Abstract Cellular stress can lead to several human disease pathologies due to aberrant cell death. The p53 family (tp53, tp63, and tp73) and downstream transcriptional apoptotic target genes (PUMA/BBC3 and NOXA/PMAIP1) have been implicated as mediators of stress signals. To evaluate the importance o...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-06-01
|
Series: | Cell Death and Disease |
Online Access: | https://doi.org/10.1038/s41419-021-03902-6 |
id |
doaj-c0a32e175b274487b92a0a732188664c |
---|---|
record_format |
Article |
spelling |
doaj-c0a32e175b274487b92a0a732188664c2021-07-04T11:05:08ZengNature Publishing GroupCell Death and Disease2041-48892021-06-0112711110.1038/s41419-021-03902-6Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosisJun Wang0Holly R. Thomas1Zhang Li2Nan Cher (Florence) Yeo3Hannah E. Scott4Nghi Dang5Mohammed Iqbal Hossain6Shaida A. Andrabi7John M. Parant8Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of MedicineDepartment of Pharmacology and Toxicology, University of Alabama at Birmingham School of MedicineDepartment of Cell, Developmental and Integrative Biology, University of Alabama at BirminghamDepartment of Pharmacology and Toxicology, University of Alabama at Birmingham School of MedicineDepartment of Biology, University of Alabama at Birmingham Collage of Arts and Sciences Department and Genetics Department, University of Alabama at Birmingham School of MedicineDepartment of Pharmacology and Toxicology, University of Alabama at Birmingham School of MedicineDepartment of Pharmacology and Toxicology, University of Alabama at Birmingham School of MedicineDepartment of Pharmacology and Toxicology, University of Alabama at Birmingham School of MedicineDepartment of Pharmacology and Toxicology, University of Alabama at Birmingham School of MedicineAbstract Cellular stress can lead to several human disease pathologies due to aberrant cell death. The p53 family (tp53, tp63, and tp73) and downstream transcriptional apoptotic target genes (PUMA/BBC3 and NOXA/PMAIP1) have been implicated as mediators of stress signals. To evaluate the importance of key stress response components in vivo, we have generated zebrafish null alleles in puma, noxa, p53, p63, and p73. Utilizing these genetic mutants, we have deciphered that the apoptotic response to genotoxic stress requires p53 and puma, but not p63, p73, or noxa. We also identified a delayed secondary wave of genotoxic stress-induced apoptosis that is p53/puma independent. Contrary to genotoxic stress, ER stress-induced apoptosis requires p63 and puma, but not p53, p73, or noxa. Lastly, the oxidative stress-induced apoptotic response requires p63, and both noxa and puma. Our data also indicate that while the neural tube is poised for apoptosis due to genotoxic stress, the epidermis is poised for apoptosis due to ER and oxidative stress. These data indicate there are convergent as well as unique molecular pathways involved in the different stress responses. The commonality of puma in these stress pathways, and the lack of gross or tumorigenic phenotypes with puma loss suggest that a inhibitor of Puma may have therapeutic application. In addition, we have also generated a knockout of the negative regulator of p53, mdm2 to further evaluate the p53-induced apoptosis. Our data indicate that the p53 null allele completely rescues the mdm2 null lethality, while the puma null completely rescues the mdm2 null apoptosis but only partially rescues the phenotype. Indicating Puma is the key mediator of p53-dependent apoptosis. Interestingly the p53 homozygous null zebrafish develop tumors faster than the previously described p53 homozygous missense mutant zebrafish, suggesting the missense allele may be hypomorphic allele.https://doi.org/10.1038/s41419-021-03902-6 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jun Wang Holly R. Thomas Zhang Li Nan Cher (Florence) Yeo Hannah E. Scott Nghi Dang Mohammed Iqbal Hossain Shaida A. Andrabi John M. Parant |
spellingShingle |
Jun Wang Holly R. Thomas Zhang Li Nan Cher (Florence) Yeo Hannah E. Scott Nghi Dang Mohammed Iqbal Hossain Shaida A. Andrabi John M. Parant Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis Cell Death and Disease |
author_facet |
Jun Wang Holly R. Thomas Zhang Li Nan Cher (Florence) Yeo Hannah E. Scott Nghi Dang Mohammed Iqbal Hossain Shaida A. Andrabi John M. Parant |
author_sort |
Jun Wang |
title |
Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis |
title_short |
Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis |
title_full |
Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis |
title_fullStr |
Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis |
title_full_unstemmed |
Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis |
title_sort |
puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis |
publisher |
Nature Publishing Group |
series |
Cell Death and Disease |
issn |
2041-4889 |
publishDate |
2021-06-01 |
description |
Abstract Cellular stress can lead to several human disease pathologies due to aberrant cell death. The p53 family (tp53, tp63, and tp73) and downstream transcriptional apoptotic target genes (PUMA/BBC3 and NOXA/PMAIP1) have been implicated as mediators of stress signals. To evaluate the importance of key stress response components in vivo, we have generated zebrafish null alleles in puma, noxa, p53, p63, and p73. Utilizing these genetic mutants, we have deciphered that the apoptotic response to genotoxic stress requires p53 and puma, but not p63, p73, or noxa. We also identified a delayed secondary wave of genotoxic stress-induced apoptosis that is p53/puma independent. Contrary to genotoxic stress, ER stress-induced apoptosis requires p63 and puma, but not p53, p73, or noxa. Lastly, the oxidative stress-induced apoptotic response requires p63, and both noxa and puma. Our data also indicate that while the neural tube is poised for apoptosis due to genotoxic stress, the epidermis is poised for apoptosis due to ER and oxidative stress. These data indicate there are convergent as well as unique molecular pathways involved in the different stress responses. The commonality of puma in these stress pathways, and the lack of gross or tumorigenic phenotypes with puma loss suggest that a inhibitor of Puma may have therapeutic application. In addition, we have also generated a knockout of the negative regulator of p53, mdm2 to further evaluate the p53-induced apoptosis. Our data indicate that the p53 null allele completely rescues the mdm2 null lethality, while the puma null completely rescues the mdm2 null apoptosis but only partially rescues the phenotype. Indicating Puma is the key mediator of p53-dependent apoptosis. Interestingly the p53 homozygous null zebrafish develop tumors faster than the previously described p53 homozygous missense mutant zebrafish, suggesting the missense allele may be hypomorphic allele. |
url |
https://doi.org/10.1038/s41419-021-03902-6 |
work_keys_str_mv |
AT junwang pumanoxap53andp63differentiallymediatestresspathwayinducedapoptosis AT hollyrthomas pumanoxap53andp63differentiallymediatestresspathwayinducedapoptosis AT zhangli pumanoxap53andp63differentiallymediatestresspathwayinducedapoptosis AT nancherflorenceyeo pumanoxap53andp63differentiallymediatestresspathwayinducedapoptosis AT hannahescott pumanoxap53andp63differentiallymediatestresspathwayinducedapoptosis AT nghidang pumanoxap53andp63differentiallymediatestresspathwayinducedapoptosis AT mohammediqbalhossain pumanoxap53andp63differentiallymediatestresspathwayinducedapoptosis AT shaidaaandrabi pumanoxap53andp63differentiallymediatestresspathwayinducedapoptosis AT johnmparant pumanoxap53andp63differentiallymediatestresspathwayinducedapoptosis |
_version_ |
1721320671920783360 |