Earth system data cubes unravel global multivariate dynamics
<p>Understanding Earth system dynamics in light of ongoing human intervention and dependency remains a major scientific challenge. The unprecedented availability of data streams describing different facets of the Earth now offers fundamentally new avenues to address this quest. However, severa...
Main Authors: | , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-02-01
|
Series: | Earth System Dynamics |
Online Access: | https://www.earth-syst-dynam.net/11/201/2020/esd-11-201-2020.pdf |
id |
doaj-c08743cf045c4d2a9710c8c7a96a99ae |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. D. Mahecha M. D. Mahecha M. D. Mahecha F. Gans G. Brandt R. Christiansen S. E. Cornell N. Fomferra G. Kraemer G. Kraemer G. Kraemer J. Peters P. Bodesheim P. Bodesheim G. Camps-Valls J. F. Donges J. F. Donges W. Dorigo L. M. Estupinan-Suarez L. M. Estupinan-Suarez V. H. Gutierrez-Velez M. Gutwin M. Gutwin M. Jung M. C. Londoño D. G. Miralles P. Papastefanou M. Reichstein M. Reichstein M. Reichstein |
spellingShingle |
M. D. Mahecha M. D. Mahecha M. D. Mahecha F. Gans G. Brandt R. Christiansen S. E. Cornell N. Fomferra G. Kraemer G. Kraemer G. Kraemer J. Peters P. Bodesheim P. Bodesheim G. Camps-Valls J. F. Donges J. F. Donges W. Dorigo L. M. Estupinan-Suarez L. M. Estupinan-Suarez V. H. Gutierrez-Velez M. Gutwin M. Gutwin M. Jung M. C. Londoño D. G. Miralles P. Papastefanou M. Reichstein M. Reichstein M. Reichstein Earth system data cubes unravel global multivariate dynamics Earth System Dynamics |
author_facet |
M. D. Mahecha M. D. Mahecha M. D. Mahecha F. Gans G. Brandt R. Christiansen S. E. Cornell N. Fomferra G. Kraemer G. Kraemer G. Kraemer J. Peters P. Bodesheim P. Bodesheim G. Camps-Valls J. F. Donges J. F. Donges W. Dorigo L. M. Estupinan-Suarez L. M. Estupinan-Suarez V. H. Gutierrez-Velez M. Gutwin M. Gutwin M. Jung M. C. Londoño D. G. Miralles P. Papastefanou M. Reichstein M. Reichstein M. Reichstein |
author_sort |
M. D. Mahecha |
title |
Earth system data cubes unravel global multivariate dynamics |
title_short |
Earth system data cubes unravel global multivariate dynamics |
title_full |
Earth system data cubes unravel global multivariate dynamics |
title_fullStr |
Earth system data cubes unravel global multivariate dynamics |
title_full_unstemmed |
Earth system data cubes unravel global multivariate dynamics |
title_sort |
earth system data cubes unravel global multivariate dynamics |
publisher |
Copernicus Publications |
series |
Earth System Dynamics |
issn |
2190-4979 2190-4987 |
publishDate |
2020-02-01 |
description |
<p>Understanding Earth system dynamics in light of ongoing human intervention and dependency remains a major scientific challenge. The unprecedented availability of data streams describing different facets of the Earth now offers fundamentally new avenues to address this quest. However, several practical hurdles, especially the lack of data interoperability, limit the joint potential of these data streams. Today, many initiatives within and beyond the Earth system sciences are exploring new approaches to overcome these hurdles and meet the growing interdisciplinary need for data-intensive research; using data cubes is one promising avenue. Here, we introduce the concept of Earth system data cubes and how to operate on them in a formal way. The idea is that treating multiple data dimensions, such as spatial, temporal, variable, frequency, and other grids alike, allows effective application of user-defined functions to co-interpret Earth observations and/or model–data integration. An implementation of this concept combines analysis-ready data cubes with a suitable analytic interface. In three case studies, we demonstrate how the concept and its implementation facilitate the execution of complex workflows for research across multiple variables, and spatial and temporal scales: (1) summary statistics for ecosystem and climate dynamics; (2) intrinsic dimensionality analysis on multiple timescales; and
(3) model–data integration. We discuss the emerging perspectives for investigating global interacting and coupled phenomena in observed or simulated data. In particular, we see many emerging perspectives of this approach<span id="page202"/> for interpreting large-scale model ensembles. The latest developments in machine learning, causal inference, and model–data integration can be seamlessly implemented in the proposed framework, supporting rapid progress in data-intensive research across disciplinary boundaries.</p> |
url |
https://www.earth-syst-dynam.net/11/201/2020/esd-11-201-2020.pdf |
work_keys_str_mv |
AT mdmahecha earthsystemdatacubesunravelglobalmultivariatedynamics AT mdmahecha earthsystemdatacubesunravelglobalmultivariatedynamics AT mdmahecha earthsystemdatacubesunravelglobalmultivariatedynamics AT fgans earthsystemdatacubesunravelglobalmultivariatedynamics AT gbrandt earthsystemdatacubesunravelglobalmultivariatedynamics AT rchristiansen earthsystemdatacubesunravelglobalmultivariatedynamics AT secornell earthsystemdatacubesunravelglobalmultivariatedynamics AT nfomferra earthsystemdatacubesunravelglobalmultivariatedynamics AT gkraemer earthsystemdatacubesunravelglobalmultivariatedynamics AT gkraemer earthsystemdatacubesunravelglobalmultivariatedynamics AT gkraemer earthsystemdatacubesunravelglobalmultivariatedynamics AT jpeters earthsystemdatacubesunravelglobalmultivariatedynamics AT pbodesheim earthsystemdatacubesunravelglobalmultivariatedynamics AT pbodesheim earthsystemdatacubesunravelglobalmultivariatedynamics AT gcampsvalls earthsystemdatacubesunravelglobalmultivariatedynamics AT jfdonges earthsystemdatacubesunravelglobalmultivariatedynamics AT jfdonges earthsystemdatacubesunravelglobalmultivariatedynamics AT wdorigo earthsystemdatacubesunravelglobalmultivariatedynamics AT lmestupinansuarez earthsystemdatacubesunravelglobalmultivariatedynamics AT lmestupinansuarez earthsystemdatacubesunravelglobalmultivariatedynamics AT vhgutierrezvelez earthsystemdatacubesunravelglobalmultivariatedynamics AT mgutwin earthsystemdatacubesunravelglobalmultivariatedynamics AT mgutwin earthsystemdatacubesunravelglobalmultivariatedynamics AT mjung earthsystemdatacubesunravelglobalmultivariatedynamics AT mclondono earthsystemdatacubesunravelglobalmultivariatedynamics AT dgmiralles earthsystemdatacubesunravelglobalmultivariatedynamics AT ppapastefanou earthsystemdatacubesunravelglobalmultivariatedynamics AT mreichstein earthsystemdatacubesunravelglobalmultivariatedynamics AT mreichstein earthsystemdatacubesunravelglobalmultivariatedynamics AT mreichstein earthsystemdatacubesunravelglobalmultivariatedynamics |
_version_ |
1724683541383479296 |
spelling |
doaj-c08743cf045c4d2a9710c8c7a96a99ae2020-11-25T03:03:59ZengCopernicus PublicationsEarth System Dynamics2190-49792190-49872020-02-011120123410.5194/esd-11-201-2020Earth system data cubes unravel global multivariate dynamicsM. D. Mahecha0M. D. Mahecha1M. D. Mahecha2F. Gans3G. Brandt4R. Christiansen5S. E. Cornell6N. Fomferra7G. Kraemer8G. Kraemer9G. Kraemer10J. Peters11P. Bodesheim12P. Bodesheim13G. Camps-Valls14J. F. Donges15J. F. Donges16W. Dorigo17L. M. Estupinan-Suarez18L. M. Estupinan-Suarez19V. H. Gutierrez-Velez20M. Gutwin21M. Gutwin22M. Jung23M. C. Londoño24D. G. Miralles25P. Papastefanou26M. Reichstein27M. Reichstein28M. Reichstein29Max Planck Institute for Biogeochemistry, Jena, GermanyGerman Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, Leipzig, GermanyMichael Stifel Center Jena for Data-Driven and Simulation Science, Jena, GermanyMax Planck Institute for Biogeochemistry, Jena, GermanyBrockmann Consult GmbH, Hamburg, GermanyDepartment of Mathematical Sciences, University of Copenhagen, Copenhagen, DenmarkStockholm Resilience Center, Stockholm University, Stockholm, SwedenBrockmann Consult GmbH, Hamburg, GermanyMax Planck Institute for Biogeochemistry, Jena, GermanyGerman Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, Leipzig, GermanyImage Processing Lab, Universitat de València, Paterna, SpainDepartment of Mathematical Sciences, University of Copenhagen, Copenhagen, DenmarkMax Planck Institute for Biogeochemistry, Jena, GermanyComputer Vision Group, Friedrich Schiller University Jena, Jena, GermanyImage Processing Lab, Universitat de València, Paterna, SpainStockholm Resilience Center, Stockholm University, Stockholm, SwedenEarth System Analysis, Potsdam Institute for Climate Impact Research, PIK, Potsdam, GermanyDepartment of Geodesy and Geo-Information, TU Wien, Vienna, AustriaMax Planck Institute for Biogeochemistry, Jena, GermanyDepartment of Geography, Friedrich Schiller University Jena, Jena, GermanyDepartment of Geography and Urban Studies, Temple University, Philadelphia, PA, USAMax Planck Institute for Biogeochemistry, Jena, GermanyDepartment of Geography, Friedrich Schiller University Jena, Jena, GermanyMax Planck Institute for Biogeochemistry, Jena, GermanyAlexander von Humboldt Biological Resources Research Institute, Bogotá, ColombiaHydro-Climate Extremes Lab (H-CEL), Ghent, BelgiumTUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, GermanyMax Planck Institute for Biogeochemistry, Jena, GermanyGerman Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, Leipzig, GermanyMichael Stifel Center Jena for Data-Driven and Simulation Science, Jena, Germany<p>Understanding Earth system dynamics in light of ongoing human intervention and dependency remains a major scientific challenge. The unprecedented availability of data streams describing different facets of the Earth now offers fundamentally new avenues to address this quest. However, several practical hurdles, especially the lack of data interoperability, limit the joint potential of these data streams. Today, many initiatives within and beyond the Earth system sciences are exploring new approaches to overcome these hurdles and meet the growing interdisciplinary need for data-intensive research; using data cubes is one promising avenue. Here, we introduce the concept of Earth system data cubes and how to operate on them in a formal way. The idea is that treating multiple data dimensions, such as spatial, temporal, variable, frequency, and other grids alike, allows effective application of user-defined functions to co-interpret Earth observations and/or model–data integration. An implementation of this concept combines analysis-ready data cubes with a suitable analytic interface. In three case studies, we demonstrate how the concept and its implementation facilitate the execution of complex workflows for research across multiple variables, and spatial and temporal scales: (1) summary statistics for ecosystem and climate dynamics; (2) intrinsic dimensionality analysis on multiple timescales; and (3) model–data integration. We discuss the emerging perspectives for investigating global interacting and coupled phenomena in observed or simulated data. In particular, we see many emerging perspectives of this approach<span id="page202"/> for interpreting large-scale model ensembles. The latest developments in machine learning, causal inference, and model–data integration can be seamlessly implemented in the proposed framework, supporting rapid progress in data-intensive research across disciplinary boundaries.</p>https://www.earth-syst-dynam.net/11/201/2020/esd-11-201-2020.pdf |