Earth system data cubes unravel global multivariate dynamics

<p>Understanding Earth system dynamics in light of ongoing human intervention and dependency remains a major scientific challenge. The unprecedented availability of data streams describing different facets of the Earth now offers fundamentally new avenues to address this quest. However, severa...

Full description

Bibliographic Details
Main Authors: M. D. Mahecha, F. Gans, G. Brandt, R. Christiansen, S. E. Cornell, N. Fomferra, G. Kraemer, J. Peters, P. Bodesheim, G. Camps-Valls, J. F. Donges, W. Dorigo, L. M. Estupinan-Suarez, V. H. Gutierrez-Velez, M. Gutwin, M. Jung, M. C. Londoño, D. G. Miralles, P. Papastefanou, M. Reichstein
Format: Article
Language:English
Published: Copernicus Publications 2020-02-01
Series:Earth System Dynamics
Online Access:https://www.earth-syst-dynam.net/11/201/2020/esd-11-201-2020.pdf
id doaj-c08743cf045c4d2a9710c8c7a96a99ae
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author M. D. Mahecha
M. D. Mahecha
M. D. Mahecha
F. Gans
G. Brandt
R. Christiansen
S. E. Cornell
N. Fomferra
G. Kraemer
G. Kraemer
G. Kraemer
J. Peters
P. Bodesheim
P. Bodesheim
G. Camps-Valls
J. F. Donges
J. F. Donges
W. Dorigo
L. M. Estupinan-Suarez
L. M. Estupinan-Suarez
V. H. Gutierrez-Velez
M. Gutwin
M. Gutwin
M. Jung
M. C. Londoño
D. G. Miralles
P. Papastefanou
M. Reichstein
M. Reichstein
M. Reichstein
spellingShingle M. D. Mahecha
M. D. Mahecha
M. D. Mahecha
F. Gans
G. Brandt
R. Christiansen
S. E. Cornell
N. Fomferra
G. Kraemer
G. Kraemer
G. Kraemer
J. Peters
P. Bodesheim
P. Bodesheim
G. Camps-Valls
J. F. Donges
J. F. Donges
W. Dorigo
L. M. Estupinan-Suarez
L. M. Estupinan-Suarez
V. H. Gutierrez-Velez
M. Gutwin
M. Gutwin
M. Jung
M. C. Londoño
D. G. Miralles
P. Papastefanou
M. Reichstein
M. Reichstein
M. Reichstein
Earth system data cubes unravel global multivariate dynamics
Earth System Dynamics
author_facet M. D. Mahecha
M. D. Mahecha
M. D. Mahecha
F. Gans
G. Brandt
R. Christiansen
S. E. Cornell
N. Fomferra
G. Kraemer
G. Kraemer
G. Kraemer
J. Peters
P. Bodesheim
P. Bodesheim
G. Camps-Valls
J. F. Donges
J. F. Donges
W. Dorigo
L. M. Estupinan-Suarez
L. M. Estupinan-Suarez
V. H. Gutierrez-Velez
M. Gutwin
M. Gutwin
M. Jung
M. C. Londoño
D. G. Miralles
P. Papastefanou
M. Reichstein
M. Reichstein
M. Reichstein
author_sort M. D. Mahecha
title Earth system data cubes unravel global multivariate dynamics
title_short Earth system data cubes unravel global multivariate dynamics
title_full Earth system data cubes unravel global multivariate dynamics
title_fullStr Earth system data cubes unravel global multivariate dynamics
title_full_unstemmed Earth system data cubes unravel global multivariate dynamics
title_sort earth system data cubes unravel global multivariate dynamics
publisher Copernicus Publications
series Earth System Dynamics
issn 2190-4979
2190-4987
publishDate 2020-02-01
description <p>Understanding Earth system dynamics in light of ongoing human intervention and dependency remains a major scientific challenge. The unprecedented availability of data streams describing different facets of the Earth now offers fundamentally new avenues to address this quest. However, several practical hurdles, especially the lack of data interoperability, limit the joint potential of these data streams. Today, many initiatives within and beyond the Earth system sciences are exploring new approaches to overcome these hurdles and meet the growing interdisciplinary need for data-intensive research; using data cubes is one promising avenue. Here, we introduce the concept of Earth system data cubes and how to operate on them in a formal way. The idea is that treating multiple data dimensions, such as spatial, temporal, variable, frequency, and other grids alike, allows effective application of user-defined functions to co-interpret Earth observations and/or model–data integration. An implementation of this concept combines analysis-ready data cubes with a suitable analytic interface. In three case studies, we demonstrate how the concept and its implementation facilitate the execution of complex workflows for research across multiple variables, and spatial and temporal scales: (1) summary statistics for ecosystem and climate dynamics; (2) intrinsic dimensionality analysis on multiple timescales; and (3) model–data integration. We discuss the emerging perspectives for investigating global interacting and coupled phenomena in observed or simulated data. In particular, we see many emerging perspectives of this approach<span id="page202"/> for interpreting large-scale model ensembles. The latest developments in machine learning, causal inference, and model–data integration can be seamlessly implemented in the proposed framework, supporting rapid progress in data-intensive research across disciplinary boundaries.</p>
url https://www.earth-syst-dynam.net/11/201/2020/esd-11-201-2020.pdf
work_keys_str_mv AT mdmahecha earthsystemdatacubesunravelglobalmultivariatedynamics
AT mdmahecha earthsystemdatacubesunravelglobalmultivariatedynamics
AT mdmahecha earthsystemdatacubesunravelglobalmultivariatedynamics
AT fgans earthsystemdatacubesunravelglobalmultivariatedynamics
AT gbrandt earthsystemdatacubesunravelglobalmultivariatedynamics
AT rchristiansen earthsystemdatacubesunravelglobalmultivariatedynamics
AT secornell earthsystemdatacubesunravelglobalmultivariatedynamics
AT nfomferra earthsystemdatacubesunravelglobalmultivariatedynamics
AT gkraemer earthsystemdatacubesunravelglobalmultivariatedynamics
AT gkraemer earthsystemdatacubesunravelglobalmultivariatedynamics
AT gkraemer earthsystemdatacubesunravelglobalmultivariatedynamics
AT jpeters earthsystemdatacubesunravelglobalmultivariatedynamics
AT pbodesheim earthsystemdatacubesunravelglobalmultivariatedynamics
AT pbodesheim earthsystemdatacubesunravelglobalmultivariatedynamics
AT gcampsvalls earthsystemdatacubesunravelglobalmultivariatedynamics
AT jfdonges earthsystemdatacubesunravelglobalmultivariatedynamics
AT jfdonges earthsystemdatacubesunravelglobalmultivariatedynamics
AT wdorigo earthsystemdatacubesunravelglobalmultivariatedynamics
AT lmestupinansuarez earthsystemdatacubesunravelglobalmultivariatedynamics
AT lmestupinansuarez earthsystemdatacubesunravelglobalmultivariatedynamics
AT vhgutierrezvelez earthsystemdatacubesunravelglobalmultivariatedynamics
AT mgutwin earthsystemdatacubesunravelglobalmultivariatedynamics
AT mgutwin earthsystemdatacubesunravelglobalmultivariatedynamics
AT mjung earthsystemdatacubesunravelglobalmultivariatedynamics
AT mclondono earthsystemdatacubesunravelglobalmultivariatedynamics
AT dgmiralles earthsystemdatacubesunravelglobalmultivariatedynamics
AT ppapastefanou earthsystemdatacubesunravelglobalmultivariatedynamics
AT mreichstein earthsystemdatacubesunravelglobalmultivariatedynamics
AT mreichstein earthsystemdatacubesunravelglobalmultivariatedynamics
AT mreichstein earthsystemdatacubesunravelglobalmultivariatedynamics
_version_ 1724683541383479296
spelling doaj-c08743cf045c4d2a9710c8c7a96a99ae2020-11-25T03:03:59ZengCopernicus PublicationsEarth System Dynamics2190-49792190-49872020-02-011120123410.5194/esd-11-201-2020Earth system data cubes unravel global multivariate dynamicsM. D. Mahecha0M. D. Mahecha1M. D. Mahecha2F. Gans3G. Brandt4R. Christiansen5S. E. Cornell6N. Fomferra7G. Kraemer8G. Kraemer9G. Kraemer10J. Peters11P. Bodesheim12P. Bodesheim13G. Camps-Valls14J. F. Donges15J. F. Donges16W. Dorigo17L. M. Estupinan-Suarez18L. M. Estupinan-Suarez19V. H. Gutierrez-Velez20M. Gutwin21M. Gutwin22M. Jung23M. C. Londoño24D. G. Miralles25P. Papastefanou26M. Reichstein27M. Reichstein28M. Reichstein29Max Planck Institute for Biogeochemistry, Jena, GermanyGerman Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, Leipzig, GermanyMichael Stifel Center Jena for Data-Driven and Simulation Science, Jena, GermanyMax Planck Institute for Biogeochemistry, Jena, GermanyBrockmann Consult GmbH, Hamburg, GermanyDepartment of Mathematical Sciences, University of Copenhagen, Copenhagen, DenmarkStockholm Resilience Center, Stockholm University, Stockholm, SwedenBrockmann Consult GmbH, Hamburg, GermanyMax Planck Institute for Biogeochemistry, Jena, GermanyGerman Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, Leipzig, GermanyImage Processing Lab, Universitat de València, Paterna, SpainDepartment of Mathematical Sciences, University of Copenhagen, Copenhagen, DenmarkMax Planck Institute for Biogeochemistry, Jena, GermanyComputer Vision Group, Friedrich Schiller University Jena, Jena, GermanyImage Processing Lab, Universitat de València, Paterna, SpainStockholm Resilience Center, Stockholm University, Stockholm, SwedenEarth System Analysis, Potsdam Institute for Climate Impact Research, PIK, Potsdam, GermanyDepartment of Geodesy and Geo-Information, TU Wien, Vienna, AustriaMax Planck Institute for Biogeochemistry, Jena, GermanyDepartment of Geography, Friedrich Schiller University Jena, Jena, GermanyDepartment of Geography and Urban Studies, Temple University, Philadelphia, PA, USAMax Planck Institute for Biogeochemistry, Jena, GermanyDepartment of Geography, Friedrich Schiller University Jena, Jena, GermanyMax Planck Institute for Biogeochemistry, Jena, GermanyAlexander von Humboldt Biological Resources Research Institute, Bogotá, ColombiaHydro-Climate Extremes Lab (H-CEL), Ghent, BelgiumTUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, GermanyMax Planck Institute for Biogeochemistry, Jena, GermanyGerman Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, Leipzig, GermanyMichael Stifel Center Jena for Data-Driven and Simulation Science, Jena, Germany<p>Understanding Earth system dynamics in light of ongoing human intervention and dependency remains a major scientific challenge. The unprecedented availability of data streams describing different facets of the Earth now offers fundamentally new avenues to address this quest. However, several practical hurdles, especially the lack of data interoperability, limit the joint potential of these data streams. Today, many initiatives within and beyond the Earth system sciences are exploring new approaches to overcome these hurdles and meet the growing interdisciplinary need for data-intensive research; using data cubes is one promising avenue. Here, we introduce the concept of Earth system data cubes and how to operate on them in a formal way. The idea is that treating multiple data dimensions, such as spatial, temporal, variable, frequency, and other grids alike, allows effective application of user-defined functions to co-interpret Earth observations and/or model–data integration. An implementation of this concept combines analysis-ready data cubes with a suitable analytic interface. In three case studies, we demonstrate how the concept and its implementation facilitate the execution of complex workflows for research across multiple variables, and spatial and temporal scales: (1) summary statistics for ecosystem and climate dynamics; (2) intrinsic dimensionality analysis on multiple timescales; and (3) model–data integration. We discuss the emerging perspectives for investigating global interacting and coupled phenomena in observed or simulated data. In particular, we see many emerging perspectives of this approach<span id="page202"/> for interpreting large-scale model ensembles. The latest developments in machine learning, causal inference, and model–data integration can be seamlessly implemented in the proposed framework, supporting rapid progress in data-intensive research across disciplinary boundaries.</p>https://www.earth-syst-dynam.net/11/201/2020/esd-11-201-2020.pdf