On the continuity of factorizations

Let {Xi : i ∈ I} be a set of sets, XJ :=Пi∈J Xi when Ø ≠ J ⊆ I; Y be a subset of XI , Z be a set, and f : Y → Z. Then f is said to depend on J if p, q ∈ Y , pJ = qJ ⇒ f(p) = f(q); in this case, fJ : πJ [Y ] → Z is well-defined by the rule f = fJ ◦ πJ|Y When the Xi and Z are spaces and f : Y → Z is...

Full description

Bibliographic Details
Main Authors: W.W. Comfort, Ivan S. Gotchev, Luis Recoder-Nuñez
Format: Article
Language:English
Published: Universitat Politècnica de València 2008-10-01
Series:Applied General Topology
Subjects:
Online Access:http://polipapers.upv.es/index.php/AGT/article/view/1806

Similar Items