Summary: | The current study investigated differences of γ-<i>zein</i> protein contents and starch granule characteristics between raw and steam flaked corns and their influences on ruminal starch hydrolyzing bacteria (SHB) attached to corn grain. Two types of raw (Corn1 and Corn2) and their steam-flaked products (SFCorn1 and SFCorn2) were applied to explore physiochemical structures and SHB attachment. SDS-PAGE was conducted to detect γ-<i>zein</i> protein patterns, scanning electron microscope, and small angle X-ray scattering were performed to obtain starch granule morphology, while crystallinity, DQ starch, and DAPI staining were applied to quantify SHB. The steam flaking process destroyed γ-<i>zein</i> proteins and gelatinized starch granules. The median particle size of Corn1 and Corn2 starch granules increased from 17.8 and 18.0 μm to 30.8 and 26.0 μm, but crystallinity decreased from 22.0 and 25.0% to 9.9 and 16.9%, respectively. The percentage of SHB attached to Corn1 residues decreased (<i>p</i> = 0.01) after 4 h incubation, but SHB attached to SFCorn1 residues increased (<i>p</i> = 0.03) after 12 h incubation. Thus, the differences of γ-<i>zein</i> proteins and starch granule physiochemical structures between raw and steam flaked corn played an important role in improving the rate and extent of starch ruminal degradation through altering the process of SHB attached to corn.
|