Generation of an induced pluripotent stem cell (iPSC) line (HIHDNEi003-A) from a patient with developmental and epileptic encephalopathy carrying a KCNA2 (p.Thr374Ala) mutation

De novo mutations in the KCNA2 gene, encoding the voltage-gated potassium channel KV1.2, have been identified to cause early-onset developmental and epileptic encephalopathies (DEE). KV1.2 channels conduct delayed-rectifier type K+ currents and play a crucial role in action potential repolarization....

Full description

Bibliographic Details
Main Authors: Betül Uysal, Heidi Löffler, Filip Rosa, Holger Lerche, Niklas Schwarz
Format: Article
Language:English
Published: Elsevier 2019-10-01
Series:Stem Cell Research
Online Access:http://www.sciencedirect.com/science/article/pii/S1873506119301734
Description
Summary:De novo mutations in the KCNA2 gene, encoding the voltage-gated potassium channel KV1.2, have been identified to cause early-onset developmental and epileptic encephalopathies (DEE). KV1.2 channels conduct delayed-rectifier type K+ currents and play a crucial role in action potential repolarization. In this study we reprogrammed fibroblasts from a 6-months-old male patient with DEE carrying a de novo point mutation (c.1120A > G, p.Thr374Ala) in KCNA2 to induced pluripotent stem cells. Their pluripotency was verified by the capability to differentiate into all three germ layers and the expression of several pluripotency markers on RNA and protein levels.
ISSN:1873-5061