Summary: | The process of homogenization of particulates is an indispensable part of many industrial processes, and, therefore, it is necessary to pay a special attention to this area and develop it. This paper deals with a complex study of homogenization of particulate matters in a rotary drum in terms of shape, size, and density of particles. In addition, the influence of operating parameters, such as drum filling capacity, rotational speed, and drum filling pattern are also investigated. Studies of reproducibility of discrete element method simulations, effects of rotary drum sizes or effects of drum volumetric filling to the mixture homogeneity index were also carried out. In general, the least satisfactory values of the homogeneity index resulted from the mixing of particles with different densities. The dominating factor of homogenization was the drum filling-up degree. The course of the homogeneity index in 140, 280, and 420 mm drums was very similar and after five revolutions of the drum, identical values of the homogeneity index were achieved for all the drum diameters. The optimal drum filling-up degree is at 40−50% for the spherical particles and 30−40% for the sharp-edged particles. The repeatability of simulations showed the maximum relative standard deviation of the homogeneity index at 0.6% from ten simulation repetitions with the same parametric conditions.
|