Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories
This work explores the quantum dynamics of the interaction between scalar (matter) and vectorial (intermediate) particles and studies their thermodynamic equilibrium in the grand-canonical ensemble. The aim of the article is to clarify the connection between the physical degrees of freedom of a theo...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2018-09-01
|
Series: | Nuclear Physics B |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0550321318302116 |
id |
doaj-c0534314652148bc8a4ef62550b7a0f0 |
---|---|
record_format |
Article |
spelling |
doaj-c0534314652148bc8a4ef62550b7a0f02020-11-24T22:06:50ZengElsevierNuclear Physics B0550-32132018-09-01934665691Transition amplitude, partition function and the role of physical degrees of freedom in gauge theoriesA.A. Nogueira0B.M. Pimentel1L. Rabanal2Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Av. dos Estados 5001, Bairro Santa Terezinha, CEP 09210-580, Santo André, SP, Brazil; Corresponding author.Instituto de Física Teórica (IFT), Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II Barra Funda, CEP 01140-070, São Paulo, SP, BrazilInstituto de Física Teórica (IFT), Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II Barra Funda, CEP 01140-070, São Paulo, SP, BrazilThis work explores the quantum dynamics of the interaction between scalar (matter) and vectorial (intermediate) particles and studies their thermodynamic equilibrium in the grand-canonical ensemble. The aim of the article is to clarify the connection between the physical degrees of freedom of a theory in both the quantization process and the description of the thermodynamic equilibrium, in which we see an intimate connection between physical degrees of freedom, Gibbs free energy and the equipartition theorem. We have split the work into two sections. First, we analyze the quantum interaction in the context of the generalized scalar Duffin–Kemmer–Petiau quantum electrodynamics (GSDKP) by using the functional formalism. We build the Hamiltonian structure following the Dirac methodology, apply the Faddeev–Senjanovic procedure to obtain the transition amplitude in the generalized Coulomb gauge and, finally, use the Faddeev–Popov–DeWitt method to write the amplitude in covariant form in the no-mixing gauge. Subsequently, we exclusively use the Matsubara–Fradkin (MF) formalism in order to describe fields in thermodynamical equilibrium. The corresponding equations in thermodynamic equilibrium for the scalar, vectorial and ghost sectors are explicitly constructed from which the extraction of the partition function is straightforward. It is in the construction of the vectorial sector that the emergence and importance of the ghost fields are revealed: they eliminate the extra non-physical degrees of freedom of the vectorial sector thus maintaining the physical degrees of freedom.http://www.sciencedirect.com/science/article/pii/S0550321318302116 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A.A. Nogueira B.M. Pimentel L. Rabanal |
spellingShingle |
A.A. Nogueira B.M. Pimentel L. Rabanal Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories Nuclear Physics B |
author_facet |
A.A. Nogueira B.M. Pimentel L. Rabanal |
author_sort |
A.A. Nogueira |
title |
Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories |
title_short |
Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories |
title_full |
Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories |
title_fullStr |
Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories |
title_full_unstemmed |
Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories |
title_sort |
transition amplitude, partition function and the role of physical degrees of freedom in gauge theories |
publisher |
Elsevier |
series |
Nuclear Physics B |
issn |
0550-3213 |
publishDate |
2018-09-01 |
description |
This work explores the quantum dynamics of the interaction between scalar (matter) and vectorial (intermediate) particles and studies their thermodynamic equilibrium in the grand-canonical ensemble. The aim of the article is to clarify the connection between the physical degrees of freedom of a theory in both the quantization process and the description of the thermodynamic equilibrium, in which we see an intimate connection between physical degrees of freedom, Gibbs free energy and the equipartition theorem. We have split the work into two sections. First, we analyze the quantum interaction in the context of the generalized scalar Duffin–Kemmer–Petiau quantum electrodynamics (GSDKP) by using the functional formalism. We build the Hamiltonian structure following the Dirac methodology, apply the Faddeev–Senjanovic procedure to obtain the transition amplitude in the generalized Coulomb gauge and, finally, use the Faddeev–Popov–DeWitt method to write the amplitude in covariant form in the no-mixing gauge. Subsequently, we exclusively use the Matsubara–Fradkin (MF) formalism in order to describe fields in thermodynamical equilibrium. The corresponding equations in thermodynamic equilibrium for the scalar, vectorial and ghost sectors are explicitly constructed from which the extraction of the partition function is straightforward. It is in the construction of the vectorial sector that the emergence and importance of the ghost fields are revealed: they eliminate the extra non-physical degrees of freedom of the vectorial sector thus maintaining the physical degrees of freedom. |
url |
http://www.sciencedirect.com/science/article/pii/S0550321318302116 |
work_keys_str_mv |
AT aanogueira transitionamplitudepartitionfunctionandtheroleofphysicaldegreesoffreedomingaugetheories AT bmpimentel transitionamplitudepartitionfunctionandtheroleofphysicaldegreesoffreedomingaugetheories AT lrabanal transitionamplitudepartitionfunctionandtheroleofphysicaldegreesoffreedomingaugetheories |
_version_ |
1725821562329759744 |