Some Generalized Pythagorean Fuzzy Bonferroni Mean Aggregation Operators with Their Application to Multiattribute Group Decision-Making

The Pythagorean fuzzy set as an extension of the intuitionistic fuzzy set characterized by membership and nonmembership degrees has been introduced recently. Accordingly, the square sum of the membership and nonmembership degrees is a maximum of one. The Pythagorean fuzzy set has been previously app...

Full description

Bibliographic Details
Main Authors: Runtong Zhang, Jun Wang, Xiaomin Zhu, Meimei Xia, Ming Yu
Format: Article
Language:English
Published: Hindawi-Wiley 2017-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2017/5937376
Description
Summary:The Pythagorean fuzzy set as an extension of the intuitionistic fuzzy set characterized by membership and nonmembership degrees has been introduced recently. Accordingly, the square sum of the membership and nonmembership degrees is a maximum of one. The Pythagorean fuzzy set has been previously applied to multiattribute group decision-making. This study develops a few aggregation operators for fusing the Pythagorean fuzzy information, and a novel approach to decision-making is introduced based on the proposed operators. First, we extend the generalized Bonferroni mean to the Pythagorean fuzzy environment and introduce the generalized Pythagorean fuzzy Bonferroni mean and the generalized Pythagorean fuzzy Bonferroni geometric mean. Second, a new generalization of the Bonferroni mean, namely, the dual generalized Bonferroni mean, is proposed by considering the shortcomings of the generalized Bonferroni mean. Furthermore, we investigate the dual generalized Bonferroni mean in the Pythagorean fuzzy sets and introduce the dual generalized Pythagorean fuzzy Bonferroni mean and dual generalized Pythagorean fuzzy Bonferroni geometric mean. Third, a novel approach to multiattribute group decision-making based on proposed operators is proposed. Lastly, a numerical instance is provided to illustrate the validity of the new approach.
ISSN:1076-2787
1099-0526