Summary: | The area chosen for study, Krishnagiri district, has a hard rock terrain and the aquifers located there are sparsely recharged by limited rainfall. The study area has a complex geology with hard rock aquifers. To have an overall view of the trace metals concentration in the groundwater of the study area, 39 groundwater samples were collected during Post Monsoon (POM) representing various lithologies. pH, EC, TDS, major ions and 22 heavy metals were analyzed for all the samples. Ca-Cl is the dominant water facies in the groundwater, which indicates the dissolution of ions by local precipitation. The analysis shows the dominance of trace metal levels in groundwater as follows: Zn > Ba > Sr > Fe > Al > B > Mn > Cu > Pb > Ni > V > Li > Rb > Cr > Mo > Se > As > Co > Cd > Ag > Sb > Be. The pollution indices, namely the heavy metal pollution index (HPI) and degree of contamination (C<sub>d</sub>) were calculated to assess the drinking and agriculture water usage. The pollution indices show that 2% of samples are polluted with respect to HPI and 3% with respect to the degree of contamination. The heavy metals (Al-Cr-Mn-Fe-Ni-Co-Zn-Ba-Pb) in groundwater show significant correlations with these indices, suggesting that they are affected by weathering of rock matrix with less anthropogenic impact. Stable isotopes (Oxygen and Hydrogen) were analyzed to identify the possible recharge mechanisms in the groundwater. It has been identified that recharge is mainly due to the local precipitation, which is the result of release metals in the groundwater through weathering.
|