Formation and decay of peat bogs in the vegetable belt of Switzerland
Abstract The rapidly collapsing glacial systems of the Alps produced a large number of melt-water lakes and mires after the Last Glacial Maximum (LGM) in the Late Glacial period. The Rhone-Aare-glacier system gave rise to large moorlands and lakes in the region of the Three Lakes Region of Western S...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-01-01
|
Series: | Swiss Journal of Geosciences |
Subjects: | |
Online Access: | https://doi.org/10.1186/s00015-020-00376-0 |
id |
doaj-c02d49d777554d22b0c9745dff5fef79 |
---|---|
record_format |
Article |
spelling |
doaj-c02d49d777554d22b0c9745dff5fef792021-01-31T16:09:32ZengSpringerOpenSwiss Journal of Geosciences1661-87261661-87342021-01-01114111610.1186/s00015-020-00376-0Formation and decay of peat bogs in the vegetable belt of SwitzerlandMarkus Egli0Guido Wiesenberg1Jens Leifeld2Holger Gärtner3Jan Seibert4Claudia Röösli5Vladimir Wingate6Wasja Dollenmeier7Pascal Griffel8Jeannine Suremann9Jan Weber10Mergime Zyberaj11Alessandra Musso12Department of Geography, University of ZürichDepartment of Geography, University of ZürichAgroscopeSwiss Federal Research Institute WSLDepartment of Geography, University of ZürichDepartment of Geography, University of ZürichDepartment of Geography, University of ZürichDepartment of Geography, University of ZürichDepartment of Geography, University of ZürichDepartment of Geography, University of ZürichDepartment of Geography, University of ZürichDepartment of Geography, University of ZürichDepartment of Geography, University of ZürichAbstract The rapidly collapsing glacial systems of the Alps produced a large number of melt-water lakes and mires after the Last Glacial Maximum (LGM) in the Late Glacial period. The Rhone-Aare-glacier system gave rise to large moorlands and lakes in the region of the Three Lakes Region of Western Switzerland. When moorlands are formed, they are efficient sinks of atmospheric carbon, but when transformed to agricultural land they are significant C sources. In addition, mires can be used as archives for reconstructing landscape evolution. We explored in more detail the dynamics of the landscape of the Three Lakes Region with a particular focus on the formation and degradation of mires. The Bernese part of the Three Lakes Region developed to become—after the optimisation of the water-levels of the Swiss Jura—the vegetable belt of Switzerland. The situation for agriculture, however, has now become critical due to an overexploitation of the peatland. Until c. 13 ka BP the entire region was hydrologically connected. An additional lake existed at the western end of the plain receiving sediments from the Aare river. Around 13 ka BP, this lake was isolated from the Aare river and completely silted up until c. 10 ka BP when a mire started to form. In the valley floor (‘Grosses Moos’), the meandering Aare and the varying level of the nearby lake of Neuchâtel caused a spatio-temporally patchy formation of mires (start of formation: 10–3 ka BP). Strong morphodynamics having high erosion and sedimentation rates and a high variability of the chemical composition of the deposited material prevailed during the early Holocene until c. 7.5 ka BP. The situation remained relatively quiet between 5 and 2 ka BP. However, during the last 2000 years the hydrodynamic and geomorphic activities have increased again. The optimisation of the Swiss Jura water-levels during the nineteenth and twentieth centuries enabled the transformation of moorland into arable land. As a consequence, the moorland strongly degraded. Mean annual C-losses in agricultural land are c. 4.9 t ha−1 and c. 2.4 t ha−1 in forests. Because forests limit, but not stop, the degradation of mires, agroforestry might be tested and propagated in future as alternative land-use systems for such sensitive areas.https://doi.org/10.1186/s00015-020-00376-0Landscape evolutionMire degradationC-lossesHoloceneSedimentationLand-use change |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Markus Egli Guido Wiesenberg Jens Leifeld Holger Gärtner Jan Seibert Claudia Röösli Vladimir Wingate Wasja Dollenmeier Pascal Griffel Jeannine Suremann Jan Weber Mergime Zyberaj Alessandra Musso |
spellingShingle |
Markus Egli Guido Wiesenberg Jens Leifeld Holger Gärtner Jan Seibert Claudia Röösli Vladimir Wingate Wasja Dollenmeier Pascal Griffel Jeannine Suremann Jan Weber Mergime Zyberaj Alessandra Musso Formation and decay of peat bogs in the vegetable belt of Switzerland Swiss Journal of Geosciences Landscape evolution Mire degradation C-losses Holocene Sedimentation Land-use change |
author_facet |
Markus Egli Guido Wiesenberg Jens Leifeld Holger Gärtner Jan Seibert Claudia Röösli Vladimir Wingate Wasja Dollenmeier Pascal Griffel Jeannine Suremann Jan Weber Mergime Zyberaj Alessandra Musso |
author_sort |
Markus Egli |
title |
Formation and decay of peat bogs in the vegetable belt of Switzerland |
title_short |
Formation and decay of peat bogs in the vegetable belt of Switzerland |
title_full |
Formation and decay of peat bogs in the vegetable belt of Switzerland |
title_fullStr |
Formation and decay of peat bogs in the vegetable belt of Switzerland |
title_full_unstemmed |
Formation and decay of peat bogs in the vegetable belt of Switzerland |
title_sort |
formation and decay of peat bogs in the vegetable belt of switzerland |
publisher |
SpringerOpen |
series |
Swiss Journal of Geosciences |
issn |
1661-8726 1661-8734 |
publishDate |
2021-01-01 |
description |
Abstract The rapidly collapsing glacial systems of the Alps produced a large number of melt-water lakes and mires after the Last Glacial Maximum (LGM) in the Late Glacial period. The Rhone-Aare-glacier system gave rise to large moorlands and lakes in the region of the Three Lakes Region of Western Switzerland. When moorlands are formed, they are efficient sinks of atmospheric carbon, but when transformed to agricultural land they are significant C sources. In addition, mires can be used as archives for reconstructing landscape evolution. We explored in more detail the dynamics of the landscape of the Three Lakes Region with a particular focus on the formation and degradation of mires. The Bernese part of the Three Lakes Region developed to become—after the optimisation of the water-levels of the Swiss Jura—the vegetable belt of Switzerland. The situation for agriculture, however, has now become critical due to an overexploitation of the peatland. Until c. 13 ka BP the entire region was hydrologically connected. An additional lake existed at the western end of the plain receiving sediments from the Aare river. Around 13 ka BP, this lake was isolated from the Aare river and completely silted up until c. 10 ka BP when a mire started to form. In the valley floor (‘Grosses Moos’), the meandering Aare and the varying level of the nearby lake of Neuchâtel caused a spatio-temporally patchy formation of mires (start of formation: 10–3 ka BP). Strong morphodynamics having high erosion and sedimentation rates and a high variability of the chemical composition of the deposited material prevailed during the early Holocene until c. 7.5 ka BP. The situation remained relatively quiet between 5 and 2 ka BP. However, during the last 2000 years the hydrodynamic and geomorphic activities have increased again. The optimisation of the Swiss Jura water-levels during the nineteenth and twentieth centuries enabled the transformation of moorland into arable land. As a consequence, the moorland strongly degraded. Mean annual C-losses in agricultural land are c. 4.9 t ha−1 and c. 2.4 t ha−1 in forests. Because forests limit, but not stop, the degradation of mires, agroforestry might be tested and propagated in future as alternative land-use systems for such sensitive areas. |
topic |
Landscape evolution Mire degradation C-losses Holocene Sedimentation Land-use change |
url |
https://doi.org/10.1186/s00015-020-00376-0 |
work_keys_str_mv |
AT markusegli formationanddecayofpeatbogsinthevegetablebeltofswitzerland AT guidowiesenberg formationanddecayofpeatbogsinthevegetablebeltofswitzerland AT jensleifeld formationanddecayofpeatbogsinthevegetablebeltofswitzerland AT holgergartner formationanddecayofpeatbogsinthevegetablebeltofswitzerland AT janseibert formationanddecayofpeatbogsinthevegetablebeltofswitzerland AT claudiaroosli formationanddecayofpeatbogsinthevegetablebeltofswitzerland AT vladimirwingate formationanddecayofpeatbogsinthevegetablebeltofswitzerland AT wasjadollenmeier formationanddecayofpeatbogsinthevegetablebeltofswitzerland AT pascalgriffel formationanddecayofpeatbogsinthevegetablebeltofswitzerland AT jeanninesuremann formationanddecayofpeatbogsinthevegetablebeltofswitzerland AT janweber formationanddecayofpeatbogsinthevegetablebeltofswitzerland AT mergimezyberaj formationanddecayofpeatbogsinthevegetablebeltofswitzerland AT alessandramusso formationanddecayofpeatbogsinthevegetablebeltofswitzerland |
_version_ |
1724316769490829312 |