OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG
Tropical regions is a region endemic to various infectious diseases. At the same time an area of high potential for the presence of infectious diseases. Infectious diseases still a major public health problem in Indonesia. Identification of endemic areas of infectious diseases is an important issue...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Fakultas Ilmu Komputer UMI
2018-12-01
|
Series: | Ilkom Jurnal Ilmiah |
Subjects: | |
Online Access: | http://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/342 |
id |
doaj-c02d26aa0af440418ca361e5b557cff6 |
---|---|
record_format |
Article |
spelling |
doaj-c02d26aa0af440418ca361e5b557cff62021-09-02T12:32:10ZengFakultas Ilmu Komputer UMIIlkom Jurnal Ilmiah2087-17162548-77792018-12-0110325125910.33096/ilkom.v10i3.342.251-259143OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANGSuhardi Rustam0Heru Agus Santoso1Catur Supriyanto2Universitas Ichsan GorontaloUniversitas Dian NuswantoroUniversitas Dian NuswantoroTropical regions is a region endemic to various infectious diseases. At the same time an area of high potential for the presence of infectious diseases. Infectious diseases still a major public health problem in Indonesia. Identification of endemic areas of infectious diseases is an important issue in the field of health, the average level of patients with physical disabilities and death are sourced from infectious diseases. Data Mining in its development into one of the main trends in the processing of the data. Data Mining could effectively identify the endemic regions of hubunngan between variables. K-means algorithm klustering used to classify the endemic areas so that the identification of endemic infectious diseases can be achieved with the level of validation that the maximum in the clustering. The use of optimization to identify the endemic areas of infectious diseases combines k-means clustering algorithm with optimization particle swarm optimization ( PSO ). the results of the experiment are endemic to the k-means algorithm with iteration =10, the K-Fold =2 has Index davies bauldin = 0.169 and k-means algorithm with PSO, iteration = 10, the K-Fold = 5, index davies bouldin = 0.113. k-fold = 5 has better performance.http://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/342endemic infectious diseasedata miningclusteringk-meansparticle swarm optimization |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Suhardi Rustam Heru Agus Santoso Catur Supriyanto |
spellingShingle |
Suhardi Rustam Heru Agus Santoso Catur Supriyanto OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG Ilkom Jurnal Ilmiah endemic infectious disease data mining clustering k-means particle swarm optimization |
author_facet |
Suhardi Rustam Heru Agus Santoso Catur Supriyanto |
author_sort |
Suhardi Rustam |
title |
OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG |
title_short |
OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG |
title_full |
OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG |
title_fullStr |
OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG |
title_full_unstemmed |
OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG |
title_sort |
optimasi k-means clustering untuk identifikasi daerah endemik penyakit menular dengan algoritma particle swarm optimization di kota semarang |
publisher |
Fakultas Ilmu Komputer UMI |
series |
Ilkom Jurnal Ilmiah |
issn |
2087-1716 2548-7779 |
publishDate |
2018-12-01 |
description |
Tropical regions is a region endemic to various infectious diseases. At the same time an area of high potential for the presence of infectious diseases. Infectious diseases still a major public health problem in Indonesia. Identification of endemic areas of infectious diseases is an important issue in the field of health, the average level of patients with physical disabilities and death are sourced from infectious diseases. Data Mining in its development into one of the main trends in the processing of the data. Data Mining could effectively identify the endemic regions of hubunngan between variables. K-means algorithm klustering used to classify the endemic areas so that the identification of endemic infectious diseases can be achieved with the level of validation that the maximum in the clustering. The use of optimization to identify the endemic areas of infectious diseases combines k-means clustering algorithm with optimization particle swarm optimization ( PSO ). the results of the experiment are endemic to the k-means algorithm with iteration =10, the K-Fold =2 has Index davies bauldin = 0.169 and k-means algorithm with PSO, iteration = 10, the K-Fold = 5, index davies bouldin = 0.113. k-fold = 5 has better performance. |
topic |
endemic infectious disease data mining clustering k-means particle swarm optimization |
url |
http://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/342 |
work_keys_str_mv |
AT suhardirustam optimasikmeansclusteringuntukidentifikasidaerahendemikpenyakitmenulardenganalgoritmaparticleswarmoptimizationdikotasemarang AT heruagussantoso optimasikmeansclusteringuntukidentifikasidaerahendemikpenyakitmenulardenganalgoritmaparticleswarmoptimizationdikotasemarang AT catursupriyanto optimasikmeansclusteringuntukidentifikasidaerahendemikpenyakitmenulardenganalgoritmaparticleswarmoptimizationdikotasemarang |
_version_ |
1721175541147500544 |