OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG

Tropical regions is a region endemic to various infectious diseases. At the same time an area of high potential for the presence of infectious diseases. Infectious diseases still a major public health problem in Indonesia. Identification of endemic areas of infectious diseases is an important issue...

Full description

Bibliographic Details
Main Authors: Suhardi Rustam, Heru Agus Santoso, Catur Supriyanto
Format: Article
Language:English
Published: Fakultas Ilmu Komputer UMI 2018-12-01
Series:Ilkom Jurnal Ilmiah
Subjects:
Online Access:http://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/342
id doaj-c02d26aa0af440418ca361e5b557cff6
record_format Article
spelling doaj-c02d26aa0af440418ca361e5b557cff62021-09-02T12:32:10ZengFakultas Ilmu Komputer UMIIlkom Jurnal Ilmiah2087-17162548-77792018-12-0110325125910.33096/ilkom.v10i3.342.251-259143OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANGSuhardi Rustam0Heru Agus Santoso1Catur Supriyanto2Universitas Ichsan GorontaloUniversitas Dian NuswantoroUniversitas Dian NuswantoroTropical regions is a region endemic to various infectious diseases. At the same time an area of high potential for the presence of infectious diseases. Infectious diseases still a major public health problem in Indonesia. Identification of endemic areas of infectious diseases is an important issue in the field of health, the average level of patients with physical disabilities and death are sourced from infectious diseases. Data Mining in its development into one of the main trends in the processing of the data. Data Mining could effectively identify the endemic regions of hubunngan between variables. K-means algorithm klustering used to classify the endemic areas so that the identification of endemic infectious diseases can be achieved with the level of validation that the maximum in the clustering. The use of optimization to identify the endemic areas of infectious diseases combines k-means clustering algorithm with optimization particle swarm optimization ( PSO ). the results of the experiment are endemic to the k-means algorithm with iteration =10, the K-Fold =2 has Index davies bauldin = 0.169 and k-means algorithm with PSO, iteration = 10, the K-Fold = 5, index davies bouldin = 0.113. k-fold = 5 has better performance.http://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/342endemic infectious diseasedata miningclusteringk-meansparticle swarm optimization
collection DOAJ
language English
format Article
sources DOAJ
author Suhardi Rustam
Heru Agus Santoso
Catur Supriyanto
spellingShingle Suhardi Rustam
Heru Agus Santoso
Catur Supriyanto
OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG
Ilkom Jurnal Ilmiah
endemic infectious disease
data mining
clustering
k-means
particle swarm optimization
author_facet Suhardi Rustam
Heru Agus Santoso
Catur Supriyanto
author_sort Suhardi Rustam
title OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG
title_short OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG
title_full OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG
title_fullStr OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG
title_full_unstemmed OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG
title_sort optimasi k-means clustering untuk identifikasi daerah endemik penyakit menular dengan algoritma particle swarm optimization di kota semarang
publisher Fakultas Ilmu Komputer UMI
series Ilkom Jurnal Ilmiah
issn 2087-1716
2548-7779
publishDate 2018-12-01
description Tropical regions is a region endemic to various infectious diseases. At the same time an area of high potential for the presence of infectious diseases. Infectious diseases still a major public health problem in Indonesia. Identification of endemic areas of infectious diseases is an important issue in the field of health, the average level of patients with physical disabilities and death are sourced from infectious diseases. Data Mining in its development into one of the main trends in the processing of the data. Data Mining could effectively identify the endemic regions of hubunngan between variables. K-means algorithm klustering used to classify the endemic areas so that the identification of endemic infectious diseases can be achieved with the level of validation that the maximum in the clustering. The use of optimization to identify the endemic areas of infectious diseases combines k-means clustering algorithm with optimization particle swarm optimization ( PSO ). the results of the experiment are endemic to the k-means algorithm with iteration =10, the K-Fold =2 has Index davies bauldin = 0.169 and k-means algorithm with PSO, iteration = 10, the K-Fold = 5, index davies bouldin = 0.113. k-fold = 5 has better performance.
topic endemic infectious disease
data mining
clustering
k-means
particle swarm optimization
url http://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/342
work_keys_str_mv AT suhardirustam optimasikmeansclusteringuntukidentifikasidaerahendemikpenyakitmenulardenganalgoritmaparticleswarmoptimizationdikotasemarang
AT heruagussantoso optimasikmeansclusteringuntukidentifikasidaerahendemikpenyakitmenulardenganalgoritmaparticleswarmoptimizationdikotasemarang
AT catursupriyanto optimasikmeansclusteringuntukidentifikasidaerahendemikpenyakitmenulardenganalgoritmaparticleswarmoptimizationdikotasemarang
_version_ 1721175541147500544