Intracerebroventricularly-administered 1-methyl-4-phenylpyridinium ion and brain-derived neurotrophic factor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigra
Parkinson's disease is a progressive neurological disease characterized by the degeneration of dopaminergic neurons in the substantia nigra. A highly similar pattern of neurodegeneration can be induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium ion (MP...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer Medknow Publications
2018-01-01
|
Series: | Neural Regeneration Research |
Subjects: | |
Online Access: | http://www.nrronline.org/article.asp?issn=1673-5374;year=2018;volume=13;issue=4;spage=717;epage=726;aulast=Chen |
id |
doaj-c02500c2453840a5ac99862ff7d7dac3 |
---|---|
record_format |
Article |
spelling |
doaj-c02500c2453840a5ac99862ff7d7dac32020-11-25T03:44:26ZengWolters Kluwer Medknow PublicationsNeural Regeneration Research1673-53742018-01-0113471772610.4103/1673-5374.230300Intracerebroventricularly-administered 1-methyl-4-phenylpyridinium ion and brain-derived neurotrophic factor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigraJun-Fang ChenMan WangYing-Han ZhuangThomas BehnischParkinson's disease is a progressive neurological disease characterized by the degeneration of dopaminergic neurons in the substantia nigra. A highly similar pattern of neurodegeneration can be induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium ion (MPP+), which cause the death of dopaminergic neurons. Administration of MPTP or MPP+ results in Parkinson's disease-like symptoms in rodents. However, it remains unclear whether intracerebroventricular MPP+ administration affects neurogenesis in the substantia nigra and subgranular zone or whether brain-derived neurotrophic factor alters the effects of MPP+. In this study, MPP+ (100 nmol) was intracerebroventricularly injected into mice to model Parkinson's disease. At 7 days after administration, the number of bromodeoxyuridine (BrdU)-positive cells in the subgranular zone of the hippocampal dentate gyrus increased, indicating enhanced neurogenesis. In contrast, a reduction in BrdU-positive cells was detected in the substantia nigra. Administration of brain-derived neurotrophic factor (100 ng) 1 day after MPP+ administration attenuated the effect of MPP+ in the subgranular zone and the substantia nigra. These findings reveal the complex interaction between neurotrophic factors and neurotoxins in the Parkinsonian model that result in distinct effects on the catecholaminergic system and on neurogenesis in different brain regions.http://www.nrronline.org/article.asp?issn=1673-5374;year=2018;volume=13;issue=4;spage=717;epage=726;aulast=Chennerve regeneration; Parkinson′s disease; MPTP; brain-derived neurotrophic factor; intracerebroventricular infusion; dopaminergic fibers; norepinephrine; tyrosine hydroxylase; hippocampus; substantia nigra; striatum; neurogenesis; neural regeneration |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jun-Fang Chen Man Wang Ying-Han Zhuang Thomas Behnisch |
spellingShingle |
Jun-Fang Chen Man Wang Ying-Han Zhuang Thomas Behnisch Intracerebroventricularly-administered 1-methyl-4-phenylpyridinium ion and brain-derived neurotrophic factor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigra Neural Regeneration Research nerve regeneration; Parkinson′s disease; MPTP; brain-derived neurotrophic factor; intracerebroventricular infusion; dopaminergic fibers; norepinephrine; tyrosine hydroxylase; hippocampus; substantia nigra; striatum; neurogenesis; neural regeneration |
author_facet |
Jun-Fang Chen Man Wang Ying-Han Zhuang Thomas Behnisch |
author_sort |
Jun-Fang Chen |
title |
Intracerebroventricularly-administered 1-methyl-4-phenylpyridinium ion and brain-derived neurotrophic factor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigra |
title_short |
Intracerebroventricularly-administered 1-methyl-4-phenylpyridinium ion and brain-derived neurotrophic factor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigra |
title_full |
Intracerebroventricularly-administered 1-methyl-4-phenylpyridinium ion and brain-derived neurotrophic factor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigra |
title_fullStr |
Intracerebroventricularly-administered 1-methyl-4-phenylpyridinium ion and brain-derived neurotrophic factor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigra |
title_full_unstemmed |
Intracerebroventricularly-administered 1-methyl-4-phenylpyridinium ion and brain-derived neurotrophic factor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigra |
title_sort |
intracerebroventricularly-administered 1-methyl-4-phenylpyridinium ion and brain-derived neurotrophic factor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigra |
publisher |
Wolters Kluwer Medknow Publications |
series |
Neural Regeneration Research |
issn |
1673-5374 |
publishDate |
2018-01-01 |
description |
Parkinson's disease is a progressive neurological disease characterized by the degeneration of dopaminergic neurons in the substantia nigra. A highly similar pattern of neurodegeneration can be induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium ion (MPP+), which cause the death of dopaminergic neurons. Administration of MPTP or MPP+ results in Parkinson's disease-like symptoms in rodents. However, it remains unclear whether intracerebroventricular MPP+ administration affects neurogenesis in the substantia nigra and subgranular zone or whether brain-derived neurotrophic factor alters the effects of MPP+. In this study, MPP+ (100 nmol) was intracerebroventricularly injected into mice to model Parkinson's disease. At 7 days after administration, the number of bromodeoxyuridine (BrdU)-positive cells in the subgranular zone of the hippocampal dentate gyrus increased, indicating enhanced neurogenesis. In contrast, a reduction in BrdU-positive cells was detected in the substantia nigra. Administration of brain-derived neurotrophic factor (100 ng) 1 day after MPP+ administration attenuated the effect of MPP+ in the subgranular zone and the substantia nigra. These findings reveal the complex interaction between neurotrophic factors and neurotoxins in the Parkinsonian model that result in distinct effects on the catecholaminergic system and on neurogenesis in different brain regions. |
topic |
nerve regeneration; Parkinson′s disease; MPTP; brain-derived neurotrophic factor; intracerebroventricular infusion; dopaminergic fibers; norepinephrine; tyrosine hydroxylase; hippocampus; substantia nigra; striatum; neurogenesis; neural regeneration |
url |
http://www.nrronline.org/article.asp?issn=1673-5374;year=2018;volume=13;issue=4;spage=717;epage=726;aulast=Chen |
work_keys_str_mv |
AT junfangchen intracerebroventricularlyadministered1methyl4phenylpyridiniumionandbrainderivedneurotrophicfactoraffectcatecholaminergicnerveterminalsandneurogenesisinthehippocampusstriatumandsubstantianigra AT manwang intracerebroventricularlyadministered1methyl4phenylpyridiniumionandbrainderivedneurotrophicfactoraffectcatecholaminergicnerveterminalsandneurogenesisinthehippocampusstriatumandsubstantianigra AT yinghanzhuang intracerebroventricularlyadministered1methyl4phenylpyridiniumionandbrainderivedneurotrophicfactoraffectcatecholaminergicnerveterminalsandneurogenesisinthehippocampusstriatumandsubstantianigra AT thomasbehnisch intracerebroventricularlyadministered1methyl4phenylpyridiniumionandbrainderivedneurotrophicfactoraffectcatecholaminergicnerveterminalsandneurogenesisinthehippocampusstriatumandsubstantianigra |
_version_ |
1724514983768752128 |