Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics

<p>Abstract</p> <p>Background</p> <p>The Limbal epithelial crypt (LEC) is a solid cord of cells, approximately 120 microns long. It arises from the undersurface of interpalisade rete ridges of the limbal palisades of Vogt and extends deeper into the limbal stroma parall...

Full description

Bibliographic Details
Main Authors: Shanmuganathan Vijay A, Hopkinson Andrew, Powe Desmond G, Yeung Aaron M, Mohammed Imran, Tighe Patrick J, Kulkarni Bina B, Dua Harminder S
Format: Article
Language:English
Published: BMC 2010-09-01
Series:BMC Genomics
Online Access:http://www.biomedcentral.com/1471-2164/11/526
id doaj-bfe04cc2e13e4f5484cfd11a751667b8
record_format Article
spelling doaj-bfe04cc2e13e4f5484cfd11a751667b82020-11-25T01:03:00ZengBMCBMC Genomics1471-21642010-09-0111152610.1186/1471-2164-11-526Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristicsShanmuganathan Vijay AHopkinson AndrewPowe Desmond GYeung Aaron MMohammed ImranTighe Patrick JKulkarni Bina BDua Harminder S<p>Abstract</p> <p>Background</p> <p>The Limbal epithelial crypt (LEC) is a solid cord of cells, approximately 120 microns long. It arises from the undersurface of interpalisade rete ridges of the limbal palisades of Vogt and extends deeper into the limbal stroma parallel or perpendicular to the palisade. There are up to 6 or 7 such LEC, variably distributed along the limbus in each human eye.</p> <p>Morphological and immunohistochemical studies on the limbal epithelial crypt (LEC) have demonstrated the presence of limbal stem cells in this region. The purpose of this microarray study was to characterise the transcriptional profile of the LEC and compare with other ocular surface epithelial regions to support our hypothesis that LEC preferentially harbours stem cells (SC).</p> <p>Results</p> <p>LEC was found to be enriched for SC related Gene Ontology (GO) terms including those identified in quiescent adult SC, however similar to cornea, limbus had significant GO terms related to proliferating SC, transient amplifying cells (TAC) and differentiated cells (DC). LEC and limbus were metabolically dormant with low protein synthesis and downregulated cell cycling. Cornea had upregulated genes for cell cycling and self renewal such as <it>FZD7, BTG1, CCNG</it>, and <it>STAT3 </it>which were identified from other SC populations. Upregulated gene expression for growth factors, cytokines, WNT, Notch, TGF-Beta pathways involved in cell proliferation and differentiation were noted in cornea. LEC had highest number of expressed sequence tags (ESTs), downregulated and unknown genes, compared to other regions. Genes expressed in LEC such as <it>CDH1, SERPINF1, LEF1, FRZB1</it>, <it>KRT19, SOD2, EGR1 </it>are known to be involved in SC maintenance. Genes of interest, in LEC belonging to the category of cell adhesion molecules, WNT and Notch signalling pathway were validated with real-time PCR and immunofluorescence.</p> <p>Conclusions</p> <p>Our transcriptional profiling study identifies the LEC as a preferential site for limbal SC with some characteristics suggesting that it could function as a 'SC niche' supporting quiescent SC. It also strengthens the evidence for the presence of "transient cells" in the corneal epithelium. These cells are immediate progeny of SC with self-renewal capacity and could be responsible for maintaining epithelial turn over in normal healthy conditions of the ocular surface (OS). The limbus has mixed population of differentiated and undifferentiated cells.</p> http://www.biomedcentral.com/1471-2164/11/526
collection DOAJ
language English
format Article
sources DOAJ
author Shanmuganathan Vijay A
Hopkinson Andrew
Powe Desmond G
Yeung Aaron M
Mohammed Imran
Tighe Patrick J
Kulkarni Bina B
Dua Harminder S
spellingShingle Shanmuganathan Vijay A
Hopkinson Andrew
Powe Desmond G
Yeung Aaron M
Mohammed Imran
Tighe Patrick J
Kulkarni Bina B
Dua Harminder S
Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics
BMC Genomics
author_facet Shanmuganathan Vijay A
Hopkinson Andrew
Powe Desmond G
Yeung Aaron M
Mohammed Imran
Tighe Patrick J
Kulkarni Bina B
Dua Harminder S
author_sort Shanmuganathan Vijay A
title Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics
title_short Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics
title_full Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics
title_fullStr Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics
title_full_unstemmed Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics
title_sort comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics
publisher BMC
series BMC Genomics
issn 1471-2164
publishDate 2010-09-01
description <p>Abstract</p> <p>Background</p> <p>The Limbal epithelial crypt (LEC) is a solid cord of cells, approximately 120 microns long. It arises from the undersurface of interpalisade rete ridges of the limbal palisades of Vogt and extends deeper into the limbal stroma parallel or perpendicular to the palisade. There are up to 6 or 7 such LEC, variably distributed along the limbus in each human eye.</p> <p>Morphological and immunohistochemical studies on the limbal epithelial crypt (LEC) have demonstrated the presence of limbal stem cells in this region. The purpose of this microarray study was to characterise the transcriptional profile of the LEC and compare with other ocular surface epithelial regions to support our hypothesis that LEC preferentially harbours stem cells (SC).</p> <p>Results</p> <p>LEC was found to be enriched for SC related Gene Ontology (GO) terms including those identified in quiescent adult SC, however similar to cornea, limbus had significant GO terms related to proliferating SC, transient amplifying cells (TAC) and differentiated cells (DC). LEC and limbus were metabolically dormant with low protein synthesis and downregulated cell cycling. Cornea had upregulated genes for cell cycling and self renewal such as <it>FZD7, BTG1, CCNG</it>, and <it>STAT3 </it>which were identified from other SC populations. Upregulated gene expression for growth factors, cytokines, WNT, Notch, TGF-Beta pathways involved in cell proliferation and differentiation were noted in cornea. LEC had highest number of expressed sequence tags (ESTs), downregulated and unknown genes, compared to other regions. Genes expressed in LEC such as <it>CDH1, SERPINF1, LEF1, FRZB1</it>, <it>KRT19, SOD2, EGR1 </it>are known to be involved in SC maintenance. Genes of interest, in LEC belonging to the category of cell adhesion molecules, WNT and Notch signalling pathway were validated with real-time PCR and immunofluorescence.</p> <p>Conclusions</p> <p>Our transcriptional profiling study identifies the LEC as a preferential site for limbal SC with some characteristics suggesting that it could function as a 'SC niche' supporting quiescent SC. It also strengthens the evidence for the presence of "transient cells" in the corneal epithelium. These cells are immediate progeny of SC with self-renewal capacity and could be responsible for maintaining epithelial turn over in normal healthy conditions of the ocular surface (OS). The limbus has mixed population of differentiated and undifferentiated cells.</p>
url http://www.biomedcentral.com/1471-2164/11/526
work_keys_str_mv AT shanmuganathanvijaya comparativetranscriptionalprofilingofthelimbalepithelialcryptdemonstratesitsputativestemcellnichecharacteristics
AT hopkinsonandrew comparativetranscriptionalprofilingofthelimbalepithelialcryptdemonstratesitsputativestemcellnichecharacteristics
AT powedesmondg comparativetranscriptionalprofilingofthelimbalepithelialcryptdemonstratesitsputativestemcellnichecharacteristics
AT yeungaaronm comparativetranscriptionalprofilingofthelimbalepithelialcryptdemonstratesitsputativestemcellnichecharacteristics
AT mohammedimran comparativetranscriptionalprofilingofthelimbalepithelialcryptdemonstratesitsputativestemcellnichecharacteristics
AT tighepatrickj comparativetranscriptionalprofilingofthelimbalepithelialcryptdemonstratesitsputativestemcellnichecharacteristics
AT kulkarnibinab comparativetranscriptionalprofilingofthelimbalepithelialcryptdemonstratesitsputativestemcellnichecharacteristics
AT duaharminders comparativetranscriptionalprofilingofthelimbalepithelialcryptdemonstratesitsputativestemcellnichecharacteristics
_version_ 1725202707593035776