Smart City Landscape Design Based on Improved Particle Swarm Optimization Algorithm

Aiming at the shortcomings of standard particle swarm optimization (PSO) algorithms that easily fall into local optimum, this paper proposes an optimization algorithm (LTQPSO) that improves quantum behavioral particle swarms. Aiming at the problem of premature convergence of the particle swarm algor...

Full description

Bibliographic Details
Main Authors: Wenting Yao, Yongjun Ding
Format: Article
Language:English
Published: Hindawi-Wiley 2020-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2020/6693411
Description
Summary:Aiming at the shortcomings of standard particle swarm optimization (PSO) algorithms that easily fall into local optimum, this paper proposes an optimization algorithm (LTQPSO) that improves quantum behavioral particle swarms. Aiming at the problem of premature convergence of the particle swarm algorithm, the evolution speed of individual particles and the population dispersion are used to dynamically adjust the inertia weights to make them adaptive and controllable, thereby avoiding premature convergence. At the same time, the natural selection method is introduced into the traditional position update formula to maintain the diversity of the population, strengthen the global search ability of the LTQPSO algorithm, and accelerate the convergence speed of the algorithm. The improved LTQPSO algorithm is applied to landscape trail path planning, and the research results prove the effectiveness and feasibility of the algorithm.
ISSN:1076-2787
1099-0526