Staring Imaging Real-Time Optimal Control Based on Neural Network

In this paper, a real-time optimal attitude controller is designed for staring imaging, and the output command is based on future prediction. First, the mathematical model of staring imaging is established. Then, the structure of the optimal attitude controller is designed. The controller consists o...

Full description

Bibliographic Details
Main Authors: Peiyun Li, Yunfeng Dong, Hongjue Li
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2020/8822223
Description
Summary:In this paper, a real-time optimal attitude controller is designed for staring imaging, and the output command is based on future prediction. First, the mathematical model of staring imaging is established. Then, the structure of the optimal attitude controller is designed. The controller consists of a preprocessing algorithm and a neural network. Constructing the neural network requires training samples generated by optimization. The objective function in the optimization method takes the future control effect into account. The neural network is trained after sample creation to achieve real-time optimal control. Compared with the PID (proportional-integral-derivative) controller with the best combination of parameters, the neural network controller achieves better attitude pointing accuracy and pointing stability.
ISSN:1687-5966
1687-5974