Picard Method for Existence, Uniqueness, and Gauss Hypergeomatric Stability of the Fractional-Order Differential Equations
In this paper, we consider a class of fractional-order differential equations and investigate two aspects of these equations. First, we consider the existence of a unique solution, and then, using a new class of control functions, we investigate the Gauss hypergeometric stability. We use Chebyshev a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2021/7074694 |
Summary: | In this paper, we consider a class of fractional-order differential equations and investigate two aspects of these equations. First, we consider the existence of a unique solution, and then, using a new class of control functions, we investigate the Gauss hypergeometric stability. We use Chebyshev and Bielecki norms in order to prove these aspects by the Picard method. Finally, we give some examples to illustrate our results. |
---|---|
ISSN: | 1563-5147 |