A Globally Convergent Filter-Type Trust Region Method for Semidefinite Programming
When using interior methods for solving semidefinite programming (SDP), one needs to solve a system of linear equations at each iteration. For problems of large size, solving the system of linear equations can be very expensive. In this paper, based on a semismooth equation reformulation using Fisch...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2012-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2012/819607 |
Summary: | When using interior methods for solving semidefinite programming (SDP), one needs to solve a system of linear equations at each iteration. For problems of large size, solving the system of linear equations can be very expensive. In this paper, based on a semismooth equation reformulation using Fischer's function, we propose a filter method with trust region for solving large-scale SDP problems. At each iteration we perform a number of conjugate gradient iterations, but do not need to solve a system of linear equations. Under mild assumptions, the convergence of this algorithm is established. Numerical examples are given to illustrate the convergence results obtained. |
---|---|
ISSN: | 1024-123X 1563-5147 |