The Most Refined Axiom for a Digital Covering Space and Its Utilities

This paper is devoted to establishing the most refined axiom for a digital covering space which remains open. The crucial step in making our approach is to simplify the notions of several types of earlier versions of local <inline-formula><math display="inline"><semantics>...

Full description

Bibliographic Details
Main Author: Sang-Eon Han
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/11/1868
id doaj-bf58bfa3b89641bca8d047ef87f782b4
record_format Article
spelling doaj-bf58bfa3b89641bca8d047ef87f782b42020-11-25T03:36:08ZengMDPI AGMathematics2227-73902020-10-0181868186810.3390/math8111868The Most Refined Axiom for a Digital Covering Space and Its UtilitiesSang-Eon Han0Department of Mathematics Education, Institute of Pure and Applied Mathematics, Jeonbuk National University, Jeonju-City Jeonbuk 54896, KoreaThis paper is devoted to establishing the most refined axiom for a digital covering space which remains open. The crucial step in making our approach is to simplify the notions of several types of earlier versions of local <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><msub><mi>k</mi><mn>0</mn></msub><mo>,</mo><msub><mi>k</mi><mn>1</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula>-isomorphisms and use the most simplified local <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><msub><mi>k</mi><mn>0</mn></msub><mo>,</mo><msub><mi>k</mi><mn>1</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula>-isomorphism. This approach is indeed a key step to make the axioms for a digital covering space very refined. In this paper, the most refined local <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><msub><mi>k</mi><mn>0</mn></msub><mo>,</mo><msub><mi>k</mi><mn>1</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula>-isomorphism is proved to be a <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><msub><mi>k</mi><mn>0</mn></msub><mo>,</mo><msub><mi>k</mi><mn>1</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula>-covering map, which implies that the earlier axioms for a digital covering space are significantly simplified with one axiom. This finding facilitates the calculations of digital fundamental groups of digital images using the unique lifting property and the homotopy lifting theorem. In addition, consider a simple closed <inline-formula><math display="inline"><semantics><mrow><mi>k</mi><mo>:</mo><mo>=</mo><mi>k</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>-curve with five elements in <inline-formula><math display="inline"><semantics><msup><mrow><mi mathvariant="double-struck">Z</mi></mrow><mi>n</mi></msup></semantics></math></inline-formula>, denoted by <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mn>5</mn></mrow></msubsup></mrow></semantics></math></inline-formula>. After introducing the notion of digital topological imbedding, we investigate some properties of <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mn>5</mn></mrow></msubsup></mrow></semantics></math></inline-formula>, where <inline-formula><math display="inline"><semantics><mrow><mi>k</mi><mo>:</mo><mo>=</mo><mi>k</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>,</mo><mn>3</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>n</mi></mrow></semantics></math></inline-formula>. Since <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mn>5</mn></mrow></msubsup></mrow></semantics></math></inline-formula> is the minimal and simple closed <i>k</i>-curve with odd elements in <inline-formula><math display="inline"><semantics><msup><mrow><mi mathvariant="double-struck">Z</mi></mrow><mi>n</mi></msup></semantics></math></inline-formula> which is not <i>k</i>-contractible, we strongly study some properties of it associated with generalized digital wedges from the viewpoint of fixed point theory. Finally, after introducing the notion of generalized digital wedge, we further address some issues which remain open. The present paper only deals with <i>k</i>-connected digital images.https://www.mdpi.com/2227-7390/8/11/1868local (k0,k1)-isomorphismunique lifting propertyhomotopy lifting theoremdigital coveringdigital topological imbeddinggeneralized digital wedge
collection DOAJ
language English
format Article
sources DOAJ
author Sang-Eon Han
spellingShingle Sang-Eon Han
The Most Refined Axiom for a Digital Covering Space and Its Utilities
Mathematics
local (k0,k1)-isomorphism
unique lifting property
homotopy lifting theorem
digital covering
digital topological imbedding
generalized digital wedge
author_facet Sang-Eon Han
author_sort Sang-Eon Han
title The Most Refined Axiom for a Digital Covering Space and Its Utilities
title_short The Most Refined Axiom for a Digital Covering Space and Its Utilities
title_full The Most Refined Axiom for a Digital Covering Space and Its Utilities
title_fullStr The Most Refined Axiom for a Digital Covering Space and Its Utilities
title_full_unstemmed The Most Refined Axiom for a Digital Covering Space and Its Utilities
title_sort most refined axiom for a digital covering space and its utilities
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-10-01
description This paper is devoted to establishing the most refined axiom for a digital covering space which remains open. The crucial step in making our approach is to simplify the notions of several types of earlier versions of local <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><msub><mi>k</mi><mn>0</mn></msub><mo>,</mo><msub><mi>k</mi><mn>1</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula>-isomorphisms and use the most simplified local <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><msub><mi>k</mi><mn>0</mn></msub><mo>,</mo><msub><mi>k</mi><mn>1</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula>-isomorphism. This approach is indeed a key step to make the axioms for a digital covering space very refined. In this paper, the most refined local <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><msub><mi>k</mi><mn>0</mn></msub><mo>,</mo><msub><mi>k</mi><mn>1</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula>-isomorphism is proved to be a <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><msub><mi>k</mi><mn>0</mn></msub><mo>,</mo><msub><mi>k</mi><mn>1</mn></msub><mo>)</mo></mrow></semantics></math></inline-formula>-covering map, which implies that the earlier axioms for a digital covering space are significantly simplified with one axiom. This finding facilitates the calculations of digital fundamental groups of digital images using the unique lifting property and the homotopy lifting theorem. In addition, consider a simple closed <inline-formula><math display="inline"><semantics><mrow><mi>k</mi><mo>:</mo><mo>=</mo><mi>k</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>-curve with five elements in <inline-formula><math display="inline"><semantics><msup><mrow><mi mathvariant="double-struck">Z</mi></mrow><mi>n</mi></msup></semantics></math></inline-formula>, denoted by <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mn>5</mn></mrow></msubsup></mrow></semantics></math></inline-formula>. After introducing the notion of digital topological imbedding, we investigate some properties of <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mn>5</mn></mrow></msubsup></mrow></semantics></math></inline-formula>, where <inline-formula><math display="inline"><semantics><mrow><mi>k</mi><mo>:</mo><mo>=</mo><mi>k</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>,</mo><mn>3</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>n</mi></mrow></semantics></math></inline-formula>. Since <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><msubsup><mi>C</mi><mi>k</mi><mrow><mi>n</mi><mo>,</mo><mn>5</mn></mrow></msubsup></mrow></semantics></math></inline-formula> is the minimal and simple closed <i>k</i>-curve with odd elements in <inline-formula><math display="inline"><semantics><msup><mrow><mi mathvariant="double-struck">Z</mi></mrow><mi>n</mi></msup></semantics></math></inline-formula> which is not <i>k</i>-contractible, we strongly study some properties of it associated with generalized digital wedges from the viewpoint of fixed point theory. Finally, after introducing the notion of generalized digital wedge, we further address some issues which remain open. The present paper only deals with <i>k</i>-connected digital images.
topic local (k0,k1)-isomorphism
unique lifting property
homotopy lifting theorem
digital covering
digital topological imbedding
generalized digital wedge
url https://www.mdpi.com/2227-7390/8/11/1868
work_keys_str_mv AT sangeonhan themostrefinedaxiomforadigitalcoveringspaceanditsutilities
AT sangeonhan mostrefinedaxiomforadigitalcoveringspaceanditsutilities
_version_ 1724550876979265536