Superposition Coded Modulation Based Faster-Than-Nyquist Signaling

A structure of faster-than-Nyquist (FTN) signaling combined with superposition coded modulation (SCM) is considered. The so-called FTN-SCM structure is able to achieve the constrained capacity of FTN signaling and only requires a low detection complexity. By deriving a new observation model suitable...

Full description

Bibliographic Details
Main Authors: Shuangyang Li, Baoming Bai, Jing Zhou, Qingli He, Qian Li
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Wireless Communications and Mobile Computing
Online Access:http://dx.doi.org/10.1155/2018/4181626
Description
Summary:A structure of faster-than-Nyquist (FTN) signaling combined with superposition coded modulation (SCM) is considered. The so-called FTN-SCM structure is able to achieve the constrained capacity of FTN signaling and only requires a low detection complexity. By deriving a new observation model suitable for FTN-SCM, we offer the power allocation based on a proper detection method. Simulation results show that, at any given spectral efficiency, the bit error rate (BER) curve of FTN-SCM lies clearly outside the minimum signal-to-noise ratio (SNR) boundary of orthogonal signaling with a larger alphabet. The achieved data rates are also close to the maximum data rates of the certain shaping pulse.
ISSN:1530-8669
1530-8677