Energy Efficiency for Data Offloading in D2D Cooperative Caching Networks

D2D communication improves the cellular network performance by using proximity-based services between adjacent devices, which considered is an effective way to solve the problem of spectrum scarcity caused by tremendous mobile data traffic. If the cache-enabled users are willing to send the cached f...

Full description

Bibliographic Details
Main Authors: Weiguang Wang, Hui Li, Wenjie Zhang, Shanlin Wei
Format: Article
Language:English
Published: Hindawi-Wiley 2020-01-01
Series:Wireless Communications and Mobile Computing
Online Access:http://dx.doi.org/10.1155/2020/2730478
Description
Summary:D2D communication improves the cellular network performance by using proximity-based services between adjacent devices, which considered is an effective way to solve the problem of spectrum scarcity caused by tremendous mobile data traffic. If the cache-enabled users are willing to send the cached file to the requesters, the content delivery traffic can be offloaded through the D2D link. In this paper, we strive to find the maximum energy efficiency of the D2D caching network through the joint optimization of cache policy and content transmit power. Specifically, based on stochastic geometry-aided modeling of the network, we derive the data offloading rate in closed form, which jointly considers the effects of success sensing probability and success transmission probability. According to the data offloading rate, we formulate a joint optimization problem integrating cache policy and transmit power to maximize the system energy efficiency. To solve this problem, we propose two optimization algorithms that the cache policy optimization algorithm based on gradient update and the joint optimization algorithm. The simulation results demonstrate that the joint optimization has twice the superiority in improving the energy efficiency of the D2D caching network compared with other schemes.
ISSN:1530-8669
1530-8677