Evaluation of anti-bacterial effects of nickel nanoparticles on biofilm production by Staphylococcus epidermidis

Background and Objectives: Staphylococcus epidermidis produces biofilm by extracellular polysaccharides, causing bacterial adherence to different surfaces. Anti-microbial effects of nickel nanoparticles on some bacterial strains such as S. aureus and Escherichia coli have been determined in limited...

Full description

Bibliographic Details
Main Authors: Morteza Vahedi, Nima Hosseini-Jazani, Saber Yousefi, Maryam Ghahremani
Format: Article
Language:English
Published: Tehran University of Medical Sciences 2017-10-01
Series:Iranian Journal of Microbiology
Subjects:
Online Access:https://ijm.tums.ac.ir/index.php/ijm/article/view/915
Description
Summary:Background and Objectives: Staphylococcus epidermidis produces biofilm by extracellular polysaccharides, causing bacterial adherence to different surfaces. Anti-microbial effects of nickel nanoparticles on some bacterial strains such as S. aureus and Escherichia coli have been determined in limited studies. The aim of the present study is to examine the inhibitory effect of nickel nanoparticles on biofilm formation using clinical isolates of S. epidermidis and its hemolytic effect on human red blood cells. Materials and Methods: Twenty two S. epidermidis isolates were collected and identified by standard microbiological methods. Microtiter plate method was used to determine the biofilm production in bacterial isolates . The amounts of biofilm formation by isolates in the presence of 0.01, 0.05, 0.1, and 1 mg/mL concentrations of nickel nanoparticles were measured. Hemolytic activity of different concentrations of nickel nanoparticles was measured on human RBC suspensions. Results: Twenty isolates were strong, and two isolates were moderate biofilm producers. Biofilm formation significantly decreased in the presence of 0.05, 0.1, and 1 mg/mL of nickel nanoparticles (p<0.05). Although in the presence of 0.01 mg/mL of nickel nanoparticles, decrease in biofilm formation was observed but it was not statistically significant (p=0.448). Slight hemolytic activity was seen in the presence of nickel nanoparticles. Conclusion: In this study, the ability of biofilm production was demonstrated for all clinical isolates of S. epidermidis. On the other hand, the lowering effects of nickel nanoparticles on biofilm formation were observed.
ISSN:2008-3289
2008-4447