<inline-formula> <graphic file="1687-1812-2011-175327-i1.gif"/></inline-formula>-Optimal Solutions in Nonconvex Semi-Infinite Programs with Support Functions
<p>Abstract</p> <p>Approximate optimality conditions for a class of nonconvex semi-infinite programs involving support functions are given. The objective function and the constraint functions are locally Lipschitz functions on <inline-formula> <graphic file="1687-1812...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2011-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2011/175327 |
id |
doaj-bf26cf5147524a7a9e524b3e01391275 |
---|---|
record_format |
Article |
spelling |
doaj-bf26cf5147524a7a9e524b3e013912752020-11-25T01:05:28ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122011-01-0120111175327<inline-formula> <graphic file="1687-1812-2011-175327-i1.gif"/></inline-formula>-Optimal Solutions in Nonconvex Semi-Infinite Programs with Support FunctionsSon TaQuangKim DoSang<p>Abstract</p> <p>Approximate optimality conditions for a class of nonconvex semi-infinite programs involving support functions are given. The objective function and the constraint functions are locally Lipschitz functions on <inline-formula> <graphic file="1687-1812-2011-175327-i2.gif"/></inline-formula>. By using a Karush-Kuhn-Tucker (KKT) condition, we deduce a necessary optimality condition for local approximate solutions. Then, generalized KKT conditions for the problems are proposed. Based on properties of <inline-formula> <graphic file="1687-1812-2011-175327-i3.gif"/></inline-formula>-semiconvexity and semiconvexity applied to locally Lipschitz functions and generalized KKT conditions, we establish sufficient optimality conditions for another kind of local approximate solutions of the problems. Obtained results in case of nonconvex semi-infinite programs and nonconvex infinite programs are discussed.</p>http://www.fixedpointtheoryandapplications.com/content/2011/175327 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Son TaQuang Kim DoSang |
spellingShingle |
Son TaQuang Kim DoSang <inline-formula> <graphic file="1687-1812-2011-175327-i1.gif"/></inline-formula>-Optimal Solutions in Nonconvex Semi-Infinite Programs with Support Functions Fixed Point Theory and Applications |
author_facet |
Son TaQuang Kim DoSang |
author_sort |
Son TaQuang |
title |
<inline-formula> <graphic file="1687-1812-2011-175327-i1.gif"/></inline-formula>-Optimal Solutions in Nonconvex Semi-Infinite Programs with Support Functions |
title_short |
<inline-formula> <graphic file="1687-1812-2011-175327-i1.gif"/></inline-formula>-Optimal Solutions in Nonconvex Semi-Infinite Programs with Support Functions |
title_full |
<inline-formula> <graphic file="1687-1812-2011-175327-i1.gif"/></inline-formula>-Optimal Solutions in Nonconvex Semi-Infinite Programs with Support Functions |
title_fullStr |
<inline-formula> <graphic file="1687-1812-2011-175327-i1.gif"/></inline-formula>-Optimal Solutions in Nonconvex Semi-Infinite Programs with Support Functions |
title_full_unstemmed |
<inline-formula> <graphic file="1687-1812-2011-175327-i1.gif"/></inline-formula>-Optimal Solutions in Nonconvex Semi-Infinite Programs with Support Functions |
title_sort |
<inline-formula> <graphic file="1687-1812-2011-175327-i1.gif"/></inline-formula>-optimal solutions in nonconvex semi-infinite programs with support functions |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2011-01-01 |
description |
<p>Abstract</p> <p>Approximate optimality conditions for a class of nonconvex semi-infinite programs involving support functions are given. The objective function and the constraint functions are locally Lipschitz functions on <inline-formula> <graphic file="1687-1812-2011-175327-i2.gif"/></inline-formula>. By using a Karush-Kuhn-Tucker (KKT) condition, we deduce a necessary optimality condition for local approximate solutions. Then, generalized KKT conditions for the problems are proposed. Based on properties of <inline-formula> <graphic file="1687-1812-2011-175327-i3.gif"/></inline-formula>-semiconvexity and semiconvexity applied to locally Lipschitz functions and generalized KKT conditions, we establish sufficient optimality conditions for another kind of local approximate solutions of the problems. Obtained results in case of nonconvex semi-infinite programs and nonconvex infinite programs are discussed.</p> |
url |
http://www.fixedpointtheoryandapplications.com/content/2011/175327 |
work_keys_str_mv |
AT sontaquang inlineformulagraphicfile168718122011175327i1gifinlineformulaoptimalsolutionsinnonconvexsemiinfiniteprogramswithsupportfunctions AT kimdosang inlineformulagraphicfile168718122011175327i1gifinlineformulaoptimalsolutionsinnonconvexsemiinfiniteprogramswithsupportfunctions |
_version_ |
1715858697485287424 |