Hierarchical Precoding in a Realistic Ultradense Heterogeneous Environment Exceeding the Degrees of Freedom

Cell densification is a widely used approach to increase the spectral efficiency per area of cellular networks. Such Ultradense Networks (UDNs) consisting of small cells are often coordinated by macro base stations (BSs). With universal frequency reuse interference from the macro BS limits the syste...

Full description

Bibliographic Details
Main Authors: Mohamed Shehata, Martin Kurras, Khaled Hassan, Lars Thiele
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2016/4796474
Description
Summary:Cell densification is a widely used approach to increase the spectral efficiency per area of cellular networks. Such Ultradense Networks (UDNs) consisting of small cells are often coordinated by macro base stations (BSs). With universal frequency reuse interference from the macro BS limits the system spectral efficiency. In this work we exploit the degrees of freedom at the macro BS to apply interference coordination. We propose a hierarchical precoding strategy in the spatial domain in order to project interference from the macro BS into the subspace of small cell users enabling linear cancellation. The macro BS interference towards small cell users is aligned within the joint null space of users served by the macro BS. Compared to classical interference alignment, our scheme does not require coordination between macrocells and small cells. We present three algorithms: in the first the interference is minimized by iterative alignment, in the second the uncoordinated interference from the small cells is considered, and in the third iterative Minimum Mean Square Error (MMSE) technique is used. We provide numerical evaluation, complexity analysis, and robustness analysis of these algorithms based on a realistic channel model showing the benefit of hierarchical precoding compared to the uncoordinated case.
ISSN:1687-5869
1687-5877