Atoms and Nanoparticles of Transition Metals as Catalysts for Hydrogen Desorption from Magnesium Hydride

The hydrogen desorption kinetics of composite materials made of magnesium hydride with transition metal additives (TM: Nb, Fe, and Zr) was studied by several experimental techniques showing that (i) a few TM at.% concentrations catalyse the H2 desorption process, (ii) the H2 desorption kinetics resu...

Full description

Bibliographic Details
Main Authors: N. Bazzanella, R. Checchetto, A. Miotello
Format: Article
Language:English
Published: Hindawi Limited 2011-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2011/865969
Description
Summary:The hydrogen desorption kinetics of composite materials made of magnesium hydride with transition metal additives (TM: Nb, Fe, and Zr) was studied by several experimental techniques showing that (i) a few TM at.% concentrations catalyse the H2 desorption process, (ii) the H2 desorption kinetics results stabilized after a few H2 sorption cycles when TM atoms aggregate by forming nanoclusters; (iii) the catalytic process occurs also at TM concentration as low as 0.06 at.% when TM atoms clustering is negligible, and (iv) mixed Fe and Zr additives produce faster H2 desorption kinetics than single additive. The improved H2 desorption kinetics of the composite materials can be explained by assuming that the interfaces between the MgH2 matrix and the TM nanoclusters act as heterogeneous sites for the nucleation of the Mg phase in the MgH2 matrix and promote the formation of fast diffusion channels for H migrating atoms.
ISSN:1687-4110
1687-4129