Summary: | We study the large-time behavior of solutions to the nonlinear exterior problem <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">L</mi> <mi>u</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mi>κ</mi> <mo stretchy="false">|</mo> <mi>u</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> </msup> <mo>,</mo> <mspace width="1.em"></mspace> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>∈</mo> <mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mo>∞</mo> <mo stretchy="false">)</mo> </mrow> <mo>×</mo> <msup> <mi>D</mi> <mi>c</mi> </msup> </mrow> </semantics> </math> </inline-formula> under the nonhomegeneous Neumann boundary condition <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mrow> <mo>∂</mo> <mi>u</mi> </mrow> <mrow> <mo>∂</mo> <mi>ν</mi> </mrow> </mfrac> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mi>λ</mi> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> <mspace width="1.em"></mspace> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>∈</mo> <mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mo>∞</mo> <mo stretchy="false">)</mo> </mrow> <mo>×</mo> <mo>∂</mo> <mi>D</mi> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">L</mi> <mo>:</mo> <mo>=</mo> <mi>i</mi> <msub> <mo>∂</mo> <mi>t</mi> </msub> <mo>+</mo> <mo>Δ</mo> </mrow> </semantics> </math> </inline-formula> is the Schrödinger operator, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>=</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is the open unit ball in <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">R</mi> <mi>N</mi> </msup> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>≥</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>D</mi> <mi>c</mi> </msup> <mo>=</mo> <msup> <mi mathvariant="double-struck">R</mi> <mi>N</mi> </msup> <mrow> <mo>∖</mo> <mi>D</mi> </mrow> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>></mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>κ</mi> <mo>∈</mo> <mi mathvariant="double-struck">C</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>κ</mi> <mo>≠</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>λ</mi> <mo>∈</mo> <msup> <mi>L</mi> <mn>1</mn> </msup> <mrow> <mo stretchy="false">(</mo> <mo>∂</mo> <mi>D</mi> <mo>,</mo> <mi mathvariant="double-struck">C</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is a nontrivial complex valued function, and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>∂</mo> <mi>ν</mi> </mrow> </semantics> </math> </inline-formula> is the outward unit normal vector on <inline-formula> <math display="inline"> <semantics> <mrow> <mo>∂</mo> <mi>D</mi> </mrow> </semantics> </math> </inline-formula>, relative to <inline-formula> <math display="inline"> <semantics> <msup> <mi>D</mi> <mi>c</mi> </msup> </semantics> </math> </inline-formula>. Namely, under a certain condition imposed on <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>κ</mi> <mo>,</mo> <mi>λ</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, we show that if <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>≥</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo><</mo> <msub> <mi>p</mi> <mi>c</mi> </msub> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>p</mi> <mi>c</mi> </msub> <mo>=</mo> <mfrac> <mi>N</mi> <mrow> <mi>N</mi> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> then the considered problem admits no global weak solutions. However, if <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, then for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>></mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, the problem admits no global weak solutions. The proof is based on the test function method introduced by Mitidieri and Pohozaev, and an adequate choice of the test function.
|