On approximating the modified Bessel function of the first kind and Toader-Qi mean
Abstract In the article, we present several sharp bounds for the modified Bessel function of the first kind I 0 ( t ) = ∑ n = 0 ∞ t 2 n 2 2 n ( n ! ) 2 $I_{0}(t)=\sum_{n=0}^{\infty}\frac{t^{2n}}{2^{2n}(n!)^{2}}$ and the Toader-Qi mean T Q ( a , b ) = 2 π ∫ 0 π / 2 a cos 2 θ b sin 2 θ d θ $TQ(a,b)=\f...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2016-02-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-016-0988-1 |
id |
doaj-bf03aebf077d4dc59ebf56c95ec1f688 |
---|---|
record_format |
Article |
spelling |
doaj-bf03aebf077d4dc59ebf56c95ec1f6882020-11-24T21:46:33ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-02-012016112110.1186/s13660-016-0988-1On approximating the modified Bessel function of the first kind and Toader-Qi meanZhen-Hang Yang0Yu-Ming Chu1School of Mathematics and Computation Sciences, Hunan City UniversitySchool of Mathematics and Computation Sciences, Hunan City UniversityAbstract In the article, we present several sharp bounds for the modified Bessel function of the first kind I 0 ( t ) = ∑ n = 0 ∞ t 2 n 2 2 n ( n ! ) 2 $I_{0}(t)=\sum_{n=0}^{\infty}\frac{t^{2n}}{2^{2n}(n!)^{2}}$ and the Toader-Qi mean T Q ( a , b ) = 2 π ∫ 0 π / 2 a cos 2 θ b sin 2 θ d θ $TQ(a,b)=\frac{2}{\pi}\int_{0}^{\pi/2}a^{\cos^{2}\theta }b^{\sin^{2}\theta}\,d\theta$ for all t > 0 $t>0$ and a , b > 0 $a, b>0$ with a ≠ b $a\neq b$ .http://link.springer.com/article/10.1186/s13660-016-0988-1modified Bessel functionToader-Qi meanlogarithmic meanidentric mean |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhen-Hang Yang Yu-Ming Chu |
spellingShingle |
Zhen-Hang Yang Yu-Ming Chu On approximating the modified Bessel function of the first kind and Toader-Qi mean Journal of Inequalities and Applications modified Bessel function Toader-Qi mean logarithmic mean identric mean |
author_facet |
Zhen-Hang Yang Yu-Ming Chu |
author_sort |
Zhen-Hang Yang |
title |
On approximating the modified Bessel function of the first kind and Toader-Qi mean |
title_short |
On approximating the modified Bessel function of the first kind and Toader-Qi mean |
title_full |
On approximating the modified Bessel function of the first kind and Toader-Qi mean |
title_fullStr |
On approximating the modified Bessel function of the first kind and Toader-Qi mean |
title_full_unstemmed |
On approximating the modified Bessel function of the first kind and Toader-Qi mean |
title_sort |
on approximating the modified bessel function of the first kind and toader-qi mean |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2016-02-01 |
description |
Abstract In the article, we present several sharp bounds for the modified Bessel function of the first kind I 0 ( t ) = ∑ n = 0 ∞ t 2 n 2 2 n ( n ! ) 2 $I_{0}(t)=\sum_{n=0}^{\infty}\frac{t^{2n}}{2^{2n}(n!)^{2}}$ and the Toader-Qi mean T Q ( a , b ) = 2 π ∫ 0 π / 2 a cos 2 θ b sin 2 θ d θ $TQ(a,b)=\frac{2}{\pi}\int_{0}^{\pi/2}a^{\cos^{2}\theta }b^{\sin^{2}\theta}\,d\theta$ for all t > 0 $t>0$ and a , b > 0 $a, b>0$ with a ≠ b $a\neq b$ . |
topic |
modified Bessel function Toader-Qi mean logarithmic mean identric mean |
url |
http://link.springer.com/article/10.1186/s13660-016-0988-1 |
work_keys_str_mv |
AT zhenhangyang onapproximatingthemodifiedbesselfunctionofthefirstkindandtoaderqimean AT yumingchu onapproximatingthemodifiedbesselfunctionofthefirstkindandtoaderqimean |
_version_ |
1725901390487748608 |