On approximating the modified Bessel function of the first kind and Toader-Qi mean

Abstract In the article, we present several sharp bounds for the modified Bessel function of the first kind I 0 ( t ) = ∑ n = 0 ∞ t 2 n 2 2 n ( n ! ) 2 $I_{0}(t)=\sum_{n=0}^{\infty}\frac{t^{2n}}{2^{2n}(n!)^{2}}$ and the Toader-Qi mean T Q ( a , b ) = 2 π ∫ 0 π / 2 a cos 2 θ b sin 2 θ d θ $TQ(a,b)=\f...

Full description

Bibliographic Details
Main Authors: Zhen-Hang Yang, Yu-Ming Chu
Format: Article
Language:English
Published: SpringerOpen 2016-02-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-016-0988-1
id doaj-bf03aebf077d4dc59ebf56c95ec1f688
record_format Article
spelling doaj-bf03aebf077d4dc59ebf56c95ec1f6882020-11-24T21:46:33ZengSpringerOpenJournal of Inequalities and Applications1029-242X2016-02-012016112110.1186/s13660-016-0988-1On approximating the modified Bessel function of the first kind and Toader-Qi meanZhen-Hang Yang0Yu-Ming Chu1School of Mathematics and Computation Sciences, Hunan City UniversitySchool of Mathematics and Computation Sciences, Hunan City UniversityAbstract In the article, we present several sharp bounds for the modified Bessel function of the first kind I 0 ( t ) = ∑ n = 0 ∞ t 2 n 2 2 n ( n ! ) 2 $I_{0}(t)=\sum_{n=0}^{\infty}\frac{t^{2n}}{2^{2n}(n!)^{2}}$ and the Toader-Qi mean T Q ( a , b ) = 2 π ∫ 0 π / 2 a cos 2 θ b sin 2 θ d θ $TQ(a,b)=\frac{2}{\pi}\int_{0}^{\pi/2}a^{\cos^{2}\theta }b^{\sin^{2}\theta}\,d\theta$ for all t > 0 $t>0$ and a , b > 0 $a, b>0$ with a ≠ b $a\neq b$ .http://link.springer.com/article/10.1186/s13660-016-0988-1modified Bessel functionToader-Qi meanlogarithmic meanidentric mean
collection DOAJ
language English
format Article
sources DOAJ
author Zhen-Hang Yang
Yu-Ming Chu
spellingShingle Zhen-Hang Yang
Yu-Ming Chu
On approximating the modified Bessel function of the first kind and Toader-Qi mean
Journal of Inequalities and Applications
modified Bessel function
Toader-Qi mean
logarithmic mean
identric mean
author_facet Zhen-Hang Yang
Yu-Ming Chu
author_sort Zhen-Hang Yang
title On approximating the modified Bessel function of the first kind and Toader-Qi mean
title_short On approximating the modified Bessel function of the first kind and Toader-Qi mean
title_full On approximating the modified Bessel function of the first kind and Toader-Qi mean
title_fullStr On approximating the modified Bessel function of the first kind and Toader-Qi mean
title_full_unstemmed On approximating the modified Bessel function of the first kind and Toader-Qi mean
title_sort on approximating the modified bessel function of the first kind and toader-qi mean
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2016-02-01
description Abstract In the article, we present several sharp bounds for the modified Bessel function of the first kind I 0 ( t ) = ∑ n = 0 ∞ t 2 n 2 2 n ( n ! ) 2 $I_{0}(t)=\sum_{n=0}^{\infty}\frac{t^{2n}}{2^{2n}(n!)^{2}}$ and the Toader-Qi mean T Q ( a , b ) = 2 π ∫ 0 π / 2 a cos 2 θ b sin 2 θ d θ $TQ(a,b)=\frac{2}{\pi}\int_{0}^{\pi/2}a^{\cos^{2}\theta }b^{\sin^{2}\theta}\,d\theta$ for all t > 0 $t>0$ and a , b > 0 $a, b>0$ with a ≠ b $a\neq b$ .
topic modified Bessel function
Toader-Qi mean
logarithmic mean
identric mean
url http://link.springer.com/article/10.1186/s13660-016-0988-1
work_keys_str_mv AT zhenhangyang onapproximatingthemodifiedbesselfunctionofthefirstkindandtoaderqimean
AT yumingchu onapproximatingthemodifiedbesselfunctionofthefirstkindandtoaderqimean
_version_ 1725901390487748608